1,773
Views
12
CrossRef citations to date
0
Altmetric
Award Review

Molecular mechanisms underlying the reception and transmission of sour taste information

Pages 171-176 | Received 16 Sep 2014, Accepted 26 Sep 2014, Published online: 26 Nov 2014

References

  • Baeyens F, Vansteenwegen D, De Houwer J, Crombez G. Observational conditioning of food valence in humans. Appetite. 1996;27:235–250.10.1006/appe.1996.0049
  • Ishimaru Y. Molecular mechanisms of taste transduction in vertebrates. Odontology. 2009;97:1–7.10.1007/s10266-008-0095-y
  • Ishimaru Y, Matsunami H. Transient receptor potential (TRP) channels and taste sensation. J. Dent. Res. 2009;88:212–218.10.1177/0022034508330212
  • Saper CB. Hypothalamic connections with the cerebral cortex. Prog. Brain Res. 2000;126:39–48.10.1016/S0079-6123(00)26005-6
  • Nakamura K, Norgren R. Sodium-deficient diet reduces gustatory activity in the nucleus of the solitary tract of behaving rats. Am. J. Physiol. 1995;269:R647–R661.
  • Scalera G, Spector AC, Norgren R. Excitotoxic lesions of the parabrachial nuclei prevent conditioned taste aversions and sodium appetite in rats. Behav. Neurosci. 1995;109:997–1008.10.1037/0735-7044.109.5.997
  • Spector AC, Scalera G, Grill HJ, Norgren R. Gustatory detection thresholds after parabrachial nuclei lesions in rats. Behav. Neurosci. 1995;109:939–954.10.1037/0735-7044.109.5.939
  • Travers SP, Norgren R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J. Neurophysiol. 1995;73:2144–2162.
  • Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009;139:234–244.10.1016/j.cell.2009.10.001
  • Chaudhari N, Roper SD. The cell biology of taste. J. Cell Biol. 2010;190:285–296.10.1083/jcb.201003144
  • Bartel DL, Sullivan SL, Lavoie EG, Sévigny J, Finger TE. Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J. Comp. Neurol. 2006;497:1–12.10.1002/(ISSN)1096-9861
  • Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC. Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J. Comp. Neurol. 2004;468:311–321.10.1002/(ISSN)1096-9861
  • DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J. Neurosci. 2006;26:3971–3980.10.1523/JNEUROSCI.0515-06.2006
  • Yang R, Montoya A, Bond A, Walton J, Kinnamon JC. Immunocytochemical analysis of P2X2 in rat circumvallate taste buds. BMC Neurosci. 2012;13:51.10.1186/1471-2202-13-51
  • Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 2005;310:1495–1499.10.1126/science.1118435
  • Hayato R, Ohtubo Y, Yoshii K. Functional expression of ionotropic purinergic receptors on mouse taste bud cells. J. Physiol. 2007;584:473–488.10.1113/jphysiol.2007.138370
  • Huang YA, Dando R, Roper SD. Autocrine and paracrine roles for ATP and serotonin in mouse taste buds. J. Neurosci. 2009;29:13909–13918.10.1523/JNEUROSCI.2351-09.2009
  • Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJ, Zuker CS. The cells and logic for mammalian sour taste detection. Nature. 2006;442:934–938.10.1038/nature05084
  • Huang YA, Maruyama Y, Stimac R, Roper SD. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J. Physiol. 2008;586:2903–2912.10.1113/jphysiol.2008.151233
  • Huang YJ, Maruyama Y, Lu KS, Pereira E, Roper SD. Mouse taste buds release serotonin in response to taste stimuli. Chem. Senses. 2005;30:i39–i40.10.1093/chemse/bjh102
  • Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Arch-Eur. J. Physiol. 2007;454:759–776.10.1007/s00424-007-0247-x
  • Kinnamon SC. Taste receptor signalling: from tongues to lungs. Acta Physiol. (Oxf). 2012;204:158–168.10.1111/apha.2011.204.issue-2
  • Richter TA, Caicedo A, Roper SD. Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. 2003;547:475–483.10.1113/jphysiol.2002.033811
  • Medler KF, Margolskee RF, Kinnamon SC. Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice. J. Neurosci. 2003;23:2608–2617.
  • Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS. High salt recruits aversive taste pathways. Nature. 2013;494:472–475.10.1038/nature11905
  • Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H, Ninomiya Y. Sour taste responses in mice lacking PKD channels. PLoS ONE. 2011;6:e20007.10.1371/journal.pone.0020007
  • Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zuker CS. The taste of carbonation. Science. 2009;326:443–445.10.1126/science.1174601
  • Pan Z, Yang H, Reinach PS. Transient receptor potential (TRP) gene superfamily encoding cation channels. Hum. Genomics. 2011;5:108–116.10.1186/1479-7364-5-2-108
  • Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Nat. Acad. Sci. USA. 2006;103:12569–12574.10.1073/pnas.0602702103
  • Ishimaru Y, Katano Y, Yamamoto K, Akiba M, Misaka T, Roberts RW, Asakura T, Matsunami H, Abe K. Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J. 2010;24:4058–4067.10.1096/fj.10-162925
  • Nelson TM, LopezJimenez ND, Tessarollo L, Inoue M, Bachmanov AA, Sullivan SL. Taste function in mice with a targeted mutation of the pkd1l3 gene. Chem. Senses. 2010;35:565–577.10.1093/chemse/bjq070
  • Inada H, Kawabata F, Ishimaru Y, Fushiki T, Matsunami H, Tominaga M. Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1. EMBO Rep. 2008;9:690–697.10.1038/embor.2008.89
  • Kawaguchi H, Yamanaka A, Uchida K, Shibasaki K, Sokabe T, Maruyama Y, Yanagawa Y, Murakami S, Tominaga M. Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J. Biol. Chem. 2010;285:17277–17281.10.1074/jbc.C110.132944
  • Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science. 2007;317:953–957.10.1126/science.1144233
  • Ohmoto M, Matsumoto I, Yasuoka A, Yoshihara Y, Abe K. Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Mol. Cell. Neurosci. 2008;38:505–517.10.1016/j.mcn.2008.04.011
  • Ohmoto M, Maeda N, Abe K, Yoshihara Y, Matsumoto I. Genetic tracing of the neural pathway for bitter taste in t2r5-WGA transgenic mice. Biochem. Biophys. Res. Commun. 2010;400:734–738.10.1016/j.bbrc.2010.08.139
  • Yoshihara Y. Visualizing selective neural pathways with WGA transgene: combination of neuroanatomy with gene technology. Neurosci. Res. 2002;44:133–140.10.1016/S0168-0102(02)00130-X
  • Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K. A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron. 1999;22:33–41.10.1016/S0896-6273(00)80676-5
  • Damak S, Mosinger B, Margolskee RF. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice. BMC Neurosci. 2008;9:96.10.1186/1471-2202-9-96
  • Yamamoto K, Ishimaru Y, Ohmoto M, Matsumoto I, Asakura T, Abe K. Genetic tracing of the gustatory neural pathway originating from Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae. J. Neurochem. 2011;119:497–506.10.1111/jnc.2011.119.issue-3
  • Yamamoto T, Kawamura Y. Dual innervation of the foliate papillae of the rat: an electrophysiological study. Chem. Senses. 1975;1:241–244.10.1093/chemse/1.3.241
  • Chang RB, Waters H, Liman ER. A proton current drives action potentials in genetically identified sour taste cells. Proc. Nat. Acad. Sci. USA. 2010;107:22320–22325.10.1073/pnas.1013664107
  • Huque T, Cowart BJ, Dankulich-Nagrudny L, Pribitkin EA, Bayley DL, Spielman AI, Feldman RS, Mackler SA, Brand JG. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS ONE. 2009;4:e7347.10.1371/journal.pone.0007347
  • Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Polycystins, calcium signaling, and human diseases. Biochem. Biophys. Res. Commun. 2004;322:1374–1383.10.1016/j.bbrc.2004.08.044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.