602
Views
2
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy

, , &
Pages 1070-1074 | Received 05 Aug 2014, Accepted 20 Jan 2015, Published online: 10 Mar 2015

References

  • Jung KH. The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya. Photochem. Photobiol. 2007;83:63–9.
  • Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL. Photochromicity of anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J. Biol. Chem. 2005;280:14663–8.
  • Jung KH, Trivedi VD, Spudich JL. Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 2003;47:1513–22.
  • Vogeley L, Trivedi VD, Sineshchekov OA, Spudich EN, Spudich JL, Luecke H. Crystal structure of the anabaena sensory rhodopsin transducer. J. Mol. Biol. 2007;367:741–51.
  • Wang S, Kim SY, Jung KH, Ladizhansky V, Brown LS. A eukaryotic-like interaction of soluble cyanobacterial sensory rhodopsin transducer with DNA. J. Mol. Biol. 2011;411:449–62.
  • Kim SY, Yoon SR, Han S, Yun Y, Jung KH. A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol. Microbiol. 2014;93:403–414.
  • De Souza RF, Iyer LM, Aravind L. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains. Biol. Direct. 2009;4:25.
  • Magde D, Elson EL, Webb WW. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 1972;29:705–708.
  • Elson EL. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 2011;101:2855–70.
  • Krichevsky O, Bonnet G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 2002;65:251–297.
  • Magde D, Webb WW, Elson EL. Fluorescence correlation spectroscopy. 3. Uniform translation and laminar-flow. Biopolymers. 1978;17:361–376.
  • Eigen M, Rigler R. Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U S A. 1994;91:5740–7.
  • Aragon SR, Pecora R. Fluorescence correlation spectroscopy and brownian rotational diffusion. Biopolymers. 1975;14:119–137.
  • Rigler R, Mets Ü, Widengren J, Kask P. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 1993;22:169–175.
  • Koppel DE, Axelrod D, Schlessinger J, Elson EL, Webb WW. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976;16:1315–29.
  • Elson EL, Magde D. Fluorescence correlation spectroscopy. 1. Conceptual basis and theory. Biopolymers. 1974;13:1–27.
  • Magde D, Elson EL, Webb WW. Fluorescence correlation spectroscopy. 2. Experimental realization. Biopolymers. 1974;13:29–61.
  • Ehrenber.M, Rigler R. Rotational Brownian-motion and fluorescence intensity fluctuations. Chem. Phys. 1974;4:390–401.
  • Schwille P, Bieschke J, Oehlenschlager F. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys Chem. 1997;66:211–28.
  • Hess ST, Huang S, Heikal AA, Webb WW. Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry. 2002;41:697–705.
  • Schwille P, Oehlenschlager F, Walter NG. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry. 1996;35:10182–10193.
  • Qian H, Elson EL. Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy. Appl. Opt. 1991;30:1185–1195.
  • Wohland T, Friedrich K, Hovius R, Vogel H. Study of ligand–receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3(As) receptor binds only one ligand. Biochemistry. 1999;38:8671–8681.
  • Meyer-Almes FJ, Wyzgol K, Powell MJ. Mechanism of the alpha-complementation reaction of E-coli beta-galactosidase deduced from fluorescence correlation spectroscopy measurements. Biophys. Chem. 1998;75:151–160.
  • Kim SH, Shim T, Kim D, Tang BZ. Particles size measurements of silole nano-clusters by using fluorescence correlation spectroscopy. J. Korean Phys. Soc. 2010;56:1264–1268.
  • Cha S, Kim SH, Kim D. Viscosity of sucrose aqueous solutions measured by using fluorescence correlation spectroscopy. J. Korean Phys. Soc. 2010;56:1315–1318.
  • Kim SY, Waschuk SA, Brown LS, Jung KH. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. Biochim. Biophys. Acta. 2008;1777:504–13.
  • Magde D, Elson EL, Webb WW. Fluorescence correlation spectroscopy. I. Conceptural basis and theory. Biopolymers. 1974;13:1–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.