1,317
Views
3
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Characterization of a thermostable glucose dehydrogenase with strict substrate specificity from a hyperthermophilic archaeon Thermoproteus sp. GDH-1

, , , , &
Pages 1094-1102 | Received 31 Oct 2014, Accepted 28 Jan 2015, Published online: 09 Mar 2015

References

  • Bak TG, Sato R. Studies on the glucose dehydrogenase of Aspergillus oryzae. I. Induction of its synthesis by rho-benzoquinone and hydroquinone. Biochim. Biophys. Acta. 1967;139:265–276.10.1016/0005-2744(67)90031-9
  • Bak TG. Studies on glucose dehydrogenase of Aspergillus oryzae. II. Purification and physical and chemical properties. Biochim. Biophys. Acta. 1967;139:277–293.10.1016/0005-2744(67)90032-0
  • Sode K, Tsugawa W, Yamazaki T, Watanabe M, Ogasawara N, Tanaka M. A novel thermostable glucose dehydrogenase varying temperature properties by altering its quaternary structures. Enzyme Microb. Technol. 1996;19:82–85.10.1016/0141-0229(95)00170-0
  • Tsuya T, Ferri S, Fujikawa M, Yamaoka H, Sode K. Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli. J. Biotechnol. 2006;123:127–136.10.1016/j.jbiotec.2005.10.017
  • Yamazaki T, Tsugawa W, Sode K. Twentieth symposium on biotechnology for fuels and chemicals. Gatlinburg: Springer; 1999. p. 325–335.
  • Yamashita Y, Ferri S, Huynh ML, Shimizu H, Yamaoka H, Sode K. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Enzyme Microb. Technol. 2013;52:123–128.10.1016/j.enzmictec.2012.11.002
  • Neijssel OM, Tempest DW, Postma PW, Duine JA, Jzn JF. Glucose metabolism by K+-limited Klebsiella aerogenes: evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiol. Lett. 1983;20:35–39.10.1111/fml.1983.20.issue-1
  • Dokter P, Frank J, Duine JA. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41. Biochem. J. 1986;239:163–167.
  • Matsushita K, Shinagawa E, Adachi O, Ameyama M. Quinoprotein d-glucose dehydrogenases in Acinetobacter calcoaceticus LMD 79.41: purification and characterization of the membrane-bound enzyme distinct from the soluble enzyme. Antonie van Leeuwenhoek. 1989;56:63–72.10.1007/BF00822585
  • Mitchell CG, Dawes EA. The role of oxygen in the regulation of glucose metabolism, transport and the tricarboxylic acid cycle in Pseudomonas aeruginosa. J. Gen. Microbiol. 1982;128:49–59.
  • Hommes RW, Simons JA, Snoep JL, Postma PW, Tempest DW, Neijssel OM. Quantitative aspects of glucose metabolism by Escherichia coli, grown in the presence of pyrroloquinoline quinone. Antonie van Leeuwenhoek. 1991;60:373–382.10.1007/BF00430375
  • Bak TG. Studies on glucose dehydrogenase of Aspergillus oryzae. 3. General enzymatic properties. Biochim. Biophys. Acta. 1967;146:317–327.10.1016/0005-2744(67)90218-5
  • Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V. Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem. J. 1986;239:517–522.
  • Siebers B, Wendisch VF, Hensel R. Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase. Arch. Microbiol. 1997;168:120–127.10.1007/s002030050477
  • Smith LD, Budgen N, Bungard SJ, Danson MJ, Hough DW. Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem. J. 1989;261:973–977.
  • Angelov A, Futterer O, Valerius O, Braus GH, Liebl W. Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS J. 2005;272:1054–1062.10.1111/ejb.2005.272.issue-4
  • Kanoh Y, Uehara S, Iwata H, Yoneda K, Ohshima T, Sakuraba H. Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium. Acta. Crystallogr., D. Biol. Crystallogr. 2014;70:1271–1280.10.1107/S1399004714002363
  • Ahmed H, Ettema TJ, Tjaden B, Geerling AC, van der Oost J, Siebers B. The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem. J. 2005;390:529–540.
  • Hilt W, Pfleiderer G, Fortnagel P. Glucose dehydrogenase from Bacillus subtilis expressed in Escherichia coli I: purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium. Biochim. Biophys. Acta. 1991;1076:298–304.10.1016/0167-4838(91)90281-4
  • Mitamura T, Urabe I, Okada H. Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium. Eur. J. Biochem. 1989;186:389–393.10.1111/ejb.1989.186.issue-1-2
  • Haferkamp P, Kutschki S, Treichel J, Hemeda H, Sewczyk K, Hoffmann D, Zaparty M, Siebers B. An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation? Biochem. Soc. Trans. 2011;39:77–81.10.1042/BST0390077
  • Bonete MJ, Pire C, LLorca FI, Camacho ML. Glucose dehydrogenase from the halophilic Archaeon Haloferax mediterranei: enzyme purification, characterisation and N-terminal sequence. FEBS Lett. 1996;383:227–229.10.1016/0014-5793(96)00235-9
  • Nishiyama M, Birktoft JJ, Beppu T. Alteration of coenzyme specificity of malate dehydrogenase from Thermus flavus by site-directed mutagenesis. J. Biol. Chem. 1993;268:4656–4660.
  • Tomita T, Kuzuyama T, Nishiyama M. Alteration of coenzyme specificity of lactate dehydrogenase from Thermus thermophilus by introducing the loop region of NADP(H)-dependent malate dehydrogenase. Biosci. Biotechnol. Biochem. 2006;70:2230–2235.10.1271/bbb.60170
  • Griffin J, Engel PC. An examination by site-directed mutagenesis of putative key residues in the determination of coenzyme specificity in clostridial NAD-dependent glutamate dehydrogenase. Enzyme Res. 2011;2011:595793.
  • Swoboda BE, Massey V. On the reaction of the glucose oxidase from Aspergillus niger with bisulfite. J. Biol. Chem. 1966;241:3409–3416.
  • Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL. The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Biol. Chem. 2006;281:14796–14804.10.1074/jbc.M601334200
  • John J, Crennell SJ, Hough DW, Danson MJ, Taylor GL. The crystal structure of glucose dehydrogenase from Thermoplasma acidophilum. Structure. 1994;2:385–393.10.1016/S0969-2126(00)00040-X
  • Baker PJ, Britton KL, Fisher M, Esclapez J, Pire C, Bonete MJ, Ferrer J, Rice DW. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily. Proc. Natl. Acad. Sci. USA. 2009;106:779–784.10.1073/pnas.0807529106
  • Esclapez J, Britton KL, Baker PJ, Fisher M, Pire C, Ferrer J, Bonete MJ, Rice DW. Crystallization and preliminary X-ray analysis of binary and ternary complexes of Haloferax mediterranei glucose dehydrogenase. Acta. Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2005;61:743–746.10.1107/S1744309105019949
  • Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815.10.1006/jmbi.1993.1626

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.