841
Views
9
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2

, , &
Pages 1898-1905 | Received 13 Nov 2014, Accepted 27 Apr 2015, Published online: 04 Jun 2015

References

  • Kaplan DI, Denham ME, Zhang S, et al. Radioiodine biogeochemistry and prevalence in groundwater. Crit. Rev. Environ. Sci. Technol. 2014;44:2287–2335.
  • Schwehr KA, Santschi PH, Kaplan DI, et al. Organo-iodine formation in soils and aquifer sediments at ambient concentrations. Environ. Sci. Technol. 2009;43:7258–7264.
  • Otosaka S, Schwehr KA, Kaplan DI, et al. Factors controlling mobility of 127I and 129I species in an acidic groundwater plume at the Savannah River Site. Sci. Total Environ. 2011;409:3857–3865.
  • Muramatsu Y, Fehn U, Yoshida S. Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. Earth Planet Sci. Lett. 2001;192:583–593.
  • Sakuma A. Manufacturing, recovery and recycling of iodine, p. 15–27. In: Yokoyama M., editor. Function & Application of Iodine Compounds. CMC Publishing: Tokyo; 2005. ( In Japanese).
  • Amachi S. Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microb. Environ. 2008;23:269–276.
  • Amachi S, Muramatsu Y, Akiyama Y, et al. Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters. Microbial. Ecol. 2005;49:547–557.
  • Arakawa Y, Akiyama Y, Furukawa H, et al. Growth stimulation of iodide-oxidizing α-Proteobacteria in iodide-rich environments. Microb. Ecol. 2012;63:522–531.
  • Fuse H, Inoue H, Murakami K, et al. Production of free and organic iodine by Roseovarius spp. FEMS Microbiol. Lett. 2003;229:189–194.
  • Sugai Y, Sasaki K, Wakizono R, et al. Considerations on the possibility of microbial clogging of re-injection wells of the wastewater generated in a water-dissolved natural gas field. Int. Biodeterior. Biodegrad. 2013;81:35–43.
  • Wakai S, Ito K, Iino T, et al. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Microb. Ecol. 2014;68:519–527.
  • Suzuki M, Eda Y, Ohsawa S, et al. Iodide oxidation by a novel multicopper oxidase from Alphaproteobacterium strain Q-1. Appl. Environ. Microbiol. 2012;78:3941–3949.
  • Ehara A, Suzuki H, Kanesaki Y, et al. Draft genome sequence of strain Q-1, an iodide-oxidizing Alphaproteobacterium isolated from natural gas brine water. Gen. Announcements. 2014;2:e00659–14.
  • Xu F. Catalysis of novel enzymatic iodide oxidation by fungal laccase. Appl. Biochem. Biotechnol. 1996;59:221–230.
  • Prakash O, Green SJ, Jasrotia P, et al Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int. J. Sys. Evol. Microbiol. 2012;62:2457–2462.
  • Reasoner DJ, Geldreichi EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985;49:1–7.
  • Hiraishi A. Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett. Appl. Microbiol. 1992;15:210–213.
  • Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703.
  • Saito N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425.
  • Su J, Deng L, Huang L, et al. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. Water Res. 2014;56:304–313.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.
  • Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 1996;68:850–858.
  • Biebl H, Allgaier M, Lünsdorf H, et al. Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int. J. Sys. Evol. Microbiol. 2005;55:2377–2383.
  • Hickey J, Panicucci R, Duan Y, et al. Control of the amount of free molecular iodine in iodine germicides. J. Pharm. Pharmacol. 1997;49:1195–1199.
  • Hansen EH, Albertsen L, Schäfer T, et al. Curvularia haloperoxidase: antimicrobial activity and potential application as a surface disinfectant. Appl. Environ. Microbiol. 2003;69:4611–4617.
  • Grass G, Rensing C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 2001;286:902–908.
  • Brouwers G-J, de, Vrind JPM, Corstjens PLAM, et al. cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl. Environ. Microbiol. 1999;65:1762–1768.
  • van Waasbergen LG, Hildebrand M, Tebo BM. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J. Bacteriol. 1996;178:3517–3530.
  • Kim C, Lorenz WW, Hoopes JT, et al. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J. Bacteriol. 2001;183:4866–4875.
  • Okazaki M, Sugita T, Shimizu M, et al. Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1. Appl. Environ. Microbiol. 1997;63:4793–4799.
  • Claus H. Laccases and their occurrence in prokaryotes. Arch. Microbiol. 2003;179:145–150.
  • Lin Y, Zhou J, Bi D, et al. Sodium-deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal. Biochem. 2008;377:259–266.
  • Seki M, Oikawa J, Taguchi T, et al. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environ. Sci. Technol. 2013;47:390–397.
  • Li H-P, Yeager CM, Brinkmeyer R, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation. Environ. Sci. Technol. 2012;46:4837–4844.
  • Li H-P, Daniel B, Creeley D, et al. Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation. Appl. Environ. Microbiol. 2014;80:2693–2699.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.