8,246
Views
142
CrossRef citations to date
0
Altmetric
Review

Current aspects of auxin biosynthesis in plants

Pages 34-42 | Received 12 Jun 2015, Accepted 03 Aug 2015, Published online: 12 Sep 2015

References

  • Darwin C. The power of movement in plants. London: John Murray; 1880.10.5962/bhl.title.102319
  • Enders TA, Strader LC. Auxin activity: past, present, and future. Am. J. Bot. 2015;102:180–196.10.3732/ajb.1400285
  • Davies PJ. The plant hormone: their nature, occurrence, and functions. In: Davies PJ, Editor. Plant hormones: biosynthesis, signal transduction, action!. The Netherlands: Kluwer Academic Publishers; 2004;p. 1–15.
  • Haagen-Smit AJ, Leech WD, Bergen WR. Estimation, isolation and identification of auxins in plant material. Science. 1941;93:624–625.10.1126/science.93.2426.624
  • Perrot-Rechenmann C. Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2010;2:a001446.
  • Woodward AW, Bartel B. Auxin: regulation, action, and interaction. Ann. Bot. 2005;95:707–735.10.1093/aob/mci083
  • Zhao Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 2010;61:49–64.10.1146/annurev-arplant-042809-112308
  • Stepanova AN, Robertson-Hoyt J, Yun J, et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191.10.1016/j.cell.2008.01.047
  • Cheng Y, Dai X, Zhao Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell. 2007;19:2430–2439.10.1105/tpc.107.053009
  • Hayashi K. The interaction and integration of auxin signaling components. Plant Cell Physiol. 2012. 53:965–975.10.1093/pcp/pcs035
  • Friml J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur. J. Cell Biol. 2010;89:231–235.10.1016/j.ejcb.2009.11.003
  • Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435:441–445.10.1038/nature03543
  • Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435:446–451.10.1038/nature03542
  • Gao Y, Zhang Y, Zhang D, et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Nat. Acad. Sci. USA. 2015;112:2275–2280.10.1073/pnas.1500365112
  • Zhao Z, Zhang Y, Liu X, et al. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev. Cell. 2013;27:113–122.10.1016/j.devcel.2013.09.005
  • Staswick PE, Serban B, Rowe M, et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. 2005;17:616–627.10.1105/tpc.104.026690
  • Jackson RG, Kowalczyk M, Li Y, et al. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J. 2002;32:573–583.10.1046/j.1365-313X.2002.01445.x
  • Tanaka K, Hayashi K, Natsume M, et al. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol. 2014;55:218–228.10.1093/pcp/pct173
  • Tognetti VB, Van Aken O, Morreel K, et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010;22:2660–2679.10.1105/tpc.109.071316
  • Qin G, Gu H, Zhao Y, et al. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell. 2005;17:2693–2704.10.1105/tpc.105.034959
  • Pencik A, Simonovik B, Petersson SV, et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell. 2013;25:3858–3870.10.1105/tpc.113.114421
  • Novák O, Hényková E, Sairanen I, et al. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536.10.1111/tpj.2012.72.issue-3
  • Zhao Y. Auxin biosynthesis. Arabidopsis Book. 2014;12:e0173.10.1199/tab.0173
  • Brumos J, Alonso JM, Stepanova AN. Genetic aspects of auxin biosynthesis and its regulation. Physiol. Plant. 2014;151:3–12.10.1111/ppl.12098
  • Korasick DA, Enders TA, Strader LC. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013;64:2541–2555.10.1093/jxb/ert080
  • Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950.10.1242/dev.086363
  • Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Nat. Acad. Sci. USA. 2011;108:18512–18517.10.1073/pnas.1108434108
  • Won C, Shen X, Mashiguchi K, et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Nat. Acad. Sci. USA. 2011;108:18518–18523.10.1073/pnas.1108436108
  • Stepanova AN, Yun J, Robles LM, et al. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 2011;23:3961–3973.10.1105/tpc.111.088047
  • Eklund DM, Ishizaki K, Flores-Sandoval E, et al. Auxin produced by the indole-3-pyruvic acid pathway regulates development and Gemmae Dormancy in the liverwort Marchantia polymorpha. Plant Cell. 2015;27:1650–1669. doi:10.1105/tpc.15.00065.
  • Sugawara S, Hishiyama S, Jikumaru Y, et al. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Nat. Acad. Sci. USA. 2009;106:5430–5435.10.1073/pnas.0811226106
  • Zhao Y, Hull AK, Gupta NR, et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 2002;16:3100–3112.10.1101/gad.1035402
  • Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012;63:2853–2872.10.1093/jxb/ers091
  • Wang B, Chu J, Yu T, et al. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Nat. Acad. Sci. USA. 2015;112:4821–4826.10.1073/pnas.1503998112
  • Tao Y, Ferrer JL, Ljung K, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–176.10.1016/j.cell.2008.01.049
  • Yamada M, Greenham K, Prigge MJ, et al. The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol. 2009;151:168–179.10.1104/pp.109.138859
  • Phillips KA, Skirpan AL, Liu X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell. 2011;23:550–566.10.1105/tpc.110.075267
  • Pacheco-Villalobos D, Sankar M, Ljung K, et al. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PLoS Genet. 2013;9:e1003564.10.1371/journal.pgen.1003564
  • Tivendale ND, Davidson SE, Davies NW, et al. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol. 2012;159:1055–1063.10.1104/pp.112.198457
  • Yoshikawa T, Ito M, Sumikura T, et al. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J. 2014;78:927–936.10.1111/tpj.12517
  • Zhao Y, Christensen SK, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science. 2001;291:306–309.10.1126/science.291.5502.306
  • Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–1799.10.1101/gad.1415106
  • Chen Q, Dai X, De-Paoli H, et al. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 2014;55:1072–1079.10.1093/pcp/pcu039
  • Kriechbaumer V, Wang P, Hawes C, et al. Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. Plant J. 2012;70:292–302.10.1111/tpj.2012.70.issue-2
  • Dai X, Mashiguchi K, Chen Q, et al. The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J. Biol. Chem. 2013;288:1448–1457.10.1074/jbc.M112.424077
  • Patten CL, Glick BR. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 1996;42:207–220.10.1139/m96-032
  • Hentrich M, Böttcher C, Düchting P, et al. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626–637.10.1111/tpj.2013.74.issue-4
  • Sun J, Qi L, Li Y, et al. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 2012;8:e1002594.10.1371/journal.pgen.1002594
  • Yamamoto Y, Kamiya N, Morinaka Y, et al. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol. 2007;143:1362–1371.10.1104/pp.106.091561
  • Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol. Genet. Genomics. 2008;279:499–507.10.1007/s00438-008-0328-3
  • Gallavotti A, Barazesh S, Malcomber S, et al. Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc. Nat. Acad. Sci. USA. 2008;105:15196–15201.10.1073/pnas.0805596105
  • Bernardi J, Lanubile A, Li QB, et al. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol. 2012;160:1318–1328.10.1104/pp.112.204743
  • Tobena-Santamaria R, Bliek M, Ljung K, et al. FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev. 2002;16:753–763.10.1101/gad.219502
  • Soeno K, Goda H, Ishii T, et al. Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol. 2010;51:524–536.10.1093/pcp/pcq032
  • He W, Brumos J, Li H, et al. A small-molecule screen identifies l-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell. 2011;23:3944–3960.10.1105/tpc.111.089029
  • Nishimura T, Hayashi K, Suzuki H, et al. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 2014;77:352–366.10.1111/tpj.2014.77.issue-3
  • Stone SL, Braybrook SA, Paula SL, et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc. Nat. Acad. Sci. USA. 2008;105:3151–3156.10.1073/pnas.0712364105
  • Wójcikowska B, Jaskóła K, Gąsiorek P, et al. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta. 2013;238:425–440.10.1007/s00425-013-1892-2
  • Sohlberg JJ, Myrenås M, Kuusk S, et al. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J. 2006;47:112–123.10.1111/tpj.2006.47.issue-1
  • Eklund DM, Staldal V, Valsecchi I, et al. The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell. 2010;22:349–363.10.1105/tpc.108.064816
  • Cui D, Zhao J, Jing Y, et al. The Arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genet. 2013;9:e1003759.10.1371/journal.pgen.1003759
  • Franklin KA, Lee SH, Patel D, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Nat. Acad. Sci. USA. 2011;108:20231–20235.10.1073/pnas.1110682108
  • Rawat R, Schwartz J, Jones MA, et al. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Nat. Acad. Sci. USA. 2009;106:16883–16888.10.1073/pnas.0813035106
  • Pinon V, Prasad K, Grigg SP, et al. Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proc. Nat. Acad. Sci. USA. 2013;110:1107–1112.10.1073/pnas.1213497110
  • Li LC, Qin GJ, Tsuge T, et al. SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. New Phytol. 2008;179:751–764.10.1111/nph.2008.179.issue-3
  • Zheng Z, Guo Y, Novák O, et al. Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat. Chem. Biol. 2013;9:244–246.10.1038/nchembio.1178
  • Kong W, Li Y, Zhang M, et al. A novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing SUPERROOT1. Plant Cell Physiol. 2015;56:715–726.10.1093/pcp/pcu216
  • Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Nat. Acad. Sci. USA. 2000;97:2379–2384.10.1073/pnas.040569997
  • Mikkelsen MD, Hansen CH, Wittstock U, et al. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 2000;275:33712–33717.10.1074/jbc.M001667200
  • Nafisi M, Goregaoker S, Botanga CJ, et al. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell. 2007;19:2039–2052.10.1105/tpc.107.051383
  • Bender J, Celenza JL. Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochem. Rev. 2009;25–37.10.1007/s11101-008-9111-7
  • Bak S, Tax FE, Feldmann KA, et al. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell. 2001;13:101–111.10.1105/tpc.13.1.101
  • Grubb CD, Zipp BJ, Ludwig-Müller J, et al. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 2004;40:893–908.10.1111/tpj.2004.40.issue-6
  • Mikkelsen MD, Naur P, Halkier BA. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J. 2004;37:770–777.10.1111/tpj.2004.37.issue-5
  • Bartel B, Fink GR. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA. 1994;91:6649–6653.10.1073/pnas.91.14.6649
  • Vorwerk S, Biernacki S, Hillebrand H, et al. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta. 2001;212:508–516.10.1007/s004250000420
  • Park WJ, Kriechbaumer V, Moller A, et al. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol. 2003;133:794–802.10.1104/pp.103.026609
  • Kriechbaumer V, Park WJ, Piotrowski M, et al. Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis. J. Exp. Bot. 2007;58:4225–4233.10.1093/jxb/erm279
  • Su T, Xu J, Li Y, et al. Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell. 2011;23:364–380.10.1105/tpc.110.079145
  • Wittstock U, Halkier BA. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J. Biol. Chem. 2000;275:14659–14666.10.1074/jbc.275.19.14659
  • Irmisch S, Zeltner P, Handrick V, et al. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol. 2015;15:128.10.1186/s12870-015-0526-1
  • Pollmann S, Neu D, Weiler EW. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry. 2003;62:293–300.10.1016/S0031-9422(02)00563-0
  • Romano CP, Robson PR, Smith H, et al. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol. Biol. 1995;27:1071–1083.10.1007/BF00020881
  • Nemoto K, Hara M, Suzuki M, et al. The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide. FEBS Lett. 2009;583:487–492.10.1016/j.febslet.2008.12.049
  • Quittenden LJ, Davies NW, Smith JA, et al. Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol. 2009;151:1130–1138.10.1104/pp.109.141507
  • Songstad DD, De Luca V, Brisson N, et al. High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiol. 1990;94:1410–1413.10.1104/pp.94.3.1410
  • Seo M, Akaba S, Oritani T, et al. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol. 1998;116:687–693.10.1104/pp.116.2.687
  • Sekimoto H, Seo M, Dohmae N, et al. Cloning and molecular characterization of plant aldehyde oxidase. J. Biol. Chem. 1997;272:15280–15285.10.1074/jbc.272.24.15280
  • Wright AD, Sampson MB, Neuffer MG, et al. Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science. 1991;254:998–1000.10.1126/science.254.5034.998
  • Normanly J, Cohen JD, Fink GR. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Nat. Acad. Sci. USA. 1993;90:10355–10359.10.1073/pnas.90.21.10355
  • Ouyang J, Shao X, Li J. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J. 2000;24:327–333.10.1046/j.1365-313x.2000.00883.x
  • Muller A, Weiler EW. Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana. Planta. 2000;211:855–863.
  • Yu P, Lor P, Ludwig-Müller J, et al. Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana. Planta. 2015;241:539–548.10.1007/s00425-014-2206-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.