629
Views
6
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic photosynthetic bacterium Rhodopseudomonas palustris

, , &
Pages 407-413 | Received 06 Jul 2015, Accepted 14 Aug 2015, Published online: 17 Sep 2015

References

  • Kaiser BN, Gridley KL, Ngaire Brady J, et al. The role of molybdenum in agricultural plant production. Ann. Bot. 2005;96:745–754.10.1093/aob/mci226
  • Zhang Y, Gladyshev VN. Molybdoproteomes and evolution of molybdenum utilization. J. Mol. Biol. 2008;379:881–899.10.1016/j.jmb.2008.03.051
  • Beevers L, Hageman RH. Nitrate reduction in higher plants. Annu. Rev. Plant Physiol. 1969;20:495–522.10.1146/annurev.pp.20.060169.002431
  • Schwarz G, Mendel RR, Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature. 2009;460:839–847.10.1038/nature08302
  • Shah VK, Brill WJ. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA. 1977;74:3249–3253.10.1073/pnas.74.8.3249
  • Grunden AM, Ray RM, Rosentel JK, et al. Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J. Bacteriol. 1996;178:735–744.
  • Aryal BP, Brugarolas P, He C. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications. J. Biol. Inorg. Chem. 2012;17:97–106.10.1007/s00775-011-0833-4
  • Hall DR, Gourley DG, Leonard GA, et al. The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds. EMBO J. 1999;18:1435–1446.10.1093/emboj/18.6.1435
  • Hennecke H. Nitrogen fixation genes involved in the Bradyrhizobium japonicum-soybean symbiosis. FEBS Lett. 1990;268:422–426.10.1016/0014-5793(90)81297-2
  • Pinckney JL, Paerl HW. Anoxygenic photosynthesis and nitrogen fixation by a microbial mat community in a bahamian hypersaline lagoon. Appl. Environ. Microbiol. 1997;63:420–426.
  • Barron AR, Wurzburger N, Bellenger JP, et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat. Geosci. 2009;2:42–45.10.1038/ngeo366
  • Carius L, Carius AB, McIntosh M, et al. Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum. BMC Microbiol. 2013;13:189.10.1186/1471-2180-13-189
  • Adessi A, Torzillo G, Baccetti E, et al. Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int. J. Hydrogen Energy. 2012;37:8840–8849.10.1016/j.ijhydene.2012.01.081
  • Carlozzi P, Sacchi A. Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J. Biotechnol. 2001;88:239–249.10.1016/S0168-1656(01)00280-2
  • Maeda I, Mizoguchi T, Miura Y, et al. Influence of sulfate-reducing bacteria on outdoor hydrogen production by photosynthetic bacterium with seawater. Curr. Microbiol. 2000;40:210–213.10.1007/s002849910042
  • Basak N, Das D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J. Microbiol. Biotechnol. 2007;23:31–42.10.1007/s11274-006-9190-9
  • Lehman LJ, Roberts GP. Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J. Bacteriol. 1991;173:5705–5711.
  • Larimer FW, Chain P, Hauser L, et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 2004;22:55–61.10.1038/nbt923
  • Maeda I, Miyasaka H, Umeda F, et al. Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3-hydroxybutyrate) as sole substrate. Biotechnol. Bioeng. 2003;81:474–481.10.1002/(ISSN)1097-0290
  • Yoshida K, Inoue K, Takahashi Y, et al. Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl. Environ. Microbiol. 2008;74:6730–6738.10.1128/AEM.00498-08
  • Nishitani T, Shimada M, Kuroda K, et al. Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl. Microbiol. Biotechnol. 2010;86:641–648.10.1007/s00253-009-2304-1
  • Inui M, Roh JH, Zahn K, et al. Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl. Environ. Microbiol. 2000;66:54–63.10.1128/AEM.66.1.54-63.2000
  • Yoshida K, Yoshioka D, Inoue K, et al. Evaluation of colors in green mutants isolated from purple bacteria as a host for colorimetric whole-cell biosensors. Appl. Microbiol. Biotechnol. 2007;76:1043–1050.10.1007/s00253-007-1079-5
  • Schott J, Griffin BM, Schink B. Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. Microbiology. 2010;156:2428–2437.10.1099/mic.0.036004-0
  • Mouncey NJ, Choudhary M, Kaplan S. Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II. J. Bacteriol. 1997;179:7617–7624.
  • McDevitt CA, Hugenholtz P, Hanson GR, et al. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol. Microbiol. 2002;44:1575–1587.10.1046/j.1365-2958.2002.02978.x
  • Maeda I, Yamashiro H, Yoshioka D, et al. Colorimetric dimethyl sulfide sensor using Rhodovulum sulfidophilum cells based on intrinsic pigment conversion by CrtA. Appl. Microbiol. Biotechnol. 2006;70:397–402.10.1007/s00253-005-0117-4
  • Leimkühler S, Kern M, Solomon PS, et al. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Mol. Microbiol. 1998;27:853–869.10.1046/j.1365-2958.1998.00733.x
  • Oda Y, Samanta SK, Rey FE, et al. Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J. Bacteriol. 2005;187:7784–7794.10.1128/JB.187.22.7784-7794.2005
  • Kuroda K, Nishitani T, Ueda M. Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl. Microbiol. Biotechnol. 2012;96:153–159.10.1007/s00253-012-4069-1
  • Sasikaka C, Ramana CV. Biotechnological potentials of anoxygenic phototrophic bacteria. II. Biopolyesters, biopesticide, biofuel, and biofertilizer. In: Neidleman SL, editor. Advances in applied microbiology 41. San Diego (CA): Academic Press; 1995. p. 227–271.
  • Saikeur A, Choorit W, Prasertsan P, et al. Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Biosci. Biotechnol. Biochem. 2009;73:987–992.10.1271/bbb.80682
  • Hotta Y, Tanaka T, Takaoka H, et al. New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci. Biotechnol. Biochem. 1997;61:2025–2028.10.1271/bbb.61.2025
  • Vieira RF, Cardoso EJBN, Vieira C, et al. Foliar application of molybdenum in common beans. I. Nitrogenase and reductase activities in a soil of high fertility. J. Plant Nutr. 1998;21:169–180.10.1080/01904169809365391

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.