1,908
Views
35
CrossRef citations to date
0
Altmetric
Review

Search for aflatoxin and trichothecene production inhibitors and analysis of their modes of action

, , , , , , , & show all
Pages 43-54 | Received 08 Jul 2015, Accepted 13 Aug 2015, Published online: 17 Sep 2015

References

  • Richard JL, Payne GA. Mycotoxins: risks in plant, animal and human systems. Ames, IA: Council for Agricultural Science and Technology Press; 2003.
  • Bennett JW, Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516.10.1128/CMR.16.3.497-516.2003
  • Strosnider H, Azziz-Baumgartner E, Banziger M, et al. Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries. Environ. Health Perspectives. 2006;114:1898–1903.
  • Wu F. Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 2015;8:137–142.10.3920/WMJ2014.1737
  • Liu Y, Chang CCH, Marsh GM, et al. Population attributable risk of aflatoxin-related liver cancer: systematic review and meta-analysis. Eur. J. Cancer. 2012;48:2125–2136.10.1016/j.ejca.2012.02.009
  • Abbas HK, Wilkinson JR, Zablotowicz RM, et al. Ecology of Aspergillus flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn. Toxin Rev. 2009;28:142–153.10.1080/15569540903081590
  • Abbas HK, Weaver MA, Horn BW, et al. Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn. Toxin Rev. 2011;30:59–70.10.3109/15569543.2011.591539
  • Ehrlich KC, Moore GG, Mellon JE, et al. Challenges facing the biological control strategy for eliminating aflatoxin contamination. World Mycotoxin J. 2015;8:225–233.10.3920/WMJ2014.1696
  • Jermnak U, Chinaphuti A, Poapolathep A, et al. Prevention of aflatoxin contamination by a soil bacterium of Stenotrophomonas sp. that produces aflatoxin production inhibitors. Microbiology. 2013;159:902–912.10.1099/mic.0.065813-0
  • Holmes RA, Boston RS, Payne GA. Diverse inhibitors of aflatoxin biosynthesis. Appl. Microbiol. Biotechnol. 2008;78:559–572.10.1007/s00253-008-1362-0
  • Gnonlonfin GJB, Adjovi Y, Gbaguidi F, et al. scopoletin in cassava products as an inhibitor of aflatoxin production. J. Food Safety. 2011;31:553–558.10.1111/jfs.2011.31.issue-4
  • Cleveland TE, Carter-Wientjes CH, De Lucca AJ, et al. Effect of soybean volatile compounds on Aspergillus flavus growth and aflatoxin production. J. Food Sci. 2009;74:H83–H87.10.1111/jfds.2009.74.issue-2
  • De Lucca AJ, Carter-Wientjes CH, Boué S, et al. Volatile trans-2-hexenal, a soybean aldehyde, inhibits Aspergillus flavus growth and aflatoxin production in corn. J. Food Sci. 2011;76:M381–M386.10.1111/jfds.2011.76.issue-6
  • Yan S, Liang Y, Zhang J, et al. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species. Fungal Gen. Biol. 2015;81:229–237.
  • Gunterus A, Roze LV, Beaudry R, et al. Ethylene inhibits aflatoxin biosynthesis in Aspergillus parasiticus grown on peanuts. Food Microbiol. 2007;24:658–663.10.1016/j.fm.2006.12.006
  • Huang JQ, Jiang HF, Zhou YQ, et al. Ethylene inhibited aflatoxin biosynthesis in due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int. J. Food Microbiol. 2009;130:17–21.10.1016/j.ijfoodmicro.2008.12.027
  • Jayashree T, Subramanyam C. Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radical Biol. Med. 2000;29:981–985.10.1016/S0891-5849(00)00398-1
  • Grintzalis K, Vernardis SI, Klapa MI, et al. Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl. Environ. Microbiol. 2014;80:5561–5571.10.1128/AEM.01282-14
  • Alpsoy L. Inhibitory effect of essential oil on aflatoxin activities. Afr. J. Biotechnol. 2010;9:2474–2481.
  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Yoshinari T, et al. Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int. J. Food Microbiol. 2008;123:228–233.10.1016/j.ijfoodmicro.2008.02.003
  • Razzaghi-Abyaneh M, Yoshinari T, Shams-Ghahfarokhi M, et al. Dillapiol and apiol as a specific inhibitors of the biosynthesis of aflatoxin G1 in Aspergillus parasiticus. Biosci. Biotechnol. Biochem. 2007;71:2329–2332.10.1271/bbb.70264
  • Yoshinari T, Yaguchi A, Takahashi-Ando N, et al. Spiroethers of German chamomile inhibit production of aflatoxin G1 and trichothecene mycotoxin by inhibiting cytochrome P450 monooxygenases involved in their biosynthesis. FEMS Microbiol. Lett. 2008;284:184–190.10.1111/fml.2008.284.issue-2
  • Jermnak U, Yoshinari T, Sugiyama Y, et al. Isolation of methyl syringate as a specific aflatoxin production inhibitor from the essential oil of Betula alba and aflatoxin production inhibitory activities of its related compounds. Int. J. Food Microbiol. 2012;153:339–344.10.1016/j.ijfoodmicro.2011.11.023
  • Abhishek RU, Mohana DC, Thippeswamy S, et al. Evaluation of Phyllanthus polyphyllu L. extract and its active constituent as a souce of antifungal, anti-aflatoxigenic, and antioxidant activities. Int. J. Food Prop. 2015;18:585–596.10.1080/10942912.2013.853187
  • Sakuda S, Ono M, Furihata K, et al. Aflastatin A, a novel inhibitor of aflatoxin production of Aspergillus parasiticus, from Streptomyces. J. Am. Chem. Soc. 1996;118:7855–7856.10.1021/ja960899d
  • Sakuda S, Ono M, Ikeda H, et al. Blasticidin A as an inhibitor of aflatoxin production by Aspergillus parasiticus. J. Antibiot. 2000;53:1265–1271.10.7164/antibiotics.53.1265
  • Yoshinari T, Akiyama T, Nakamura K, et al. Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus. Microbiology. 2007;153:2774–2780.10.1099/mic.0.2006/005629-0
  • Sakuda S. Mycotoxin production inhibitors from natural products. Mycotoxins. 2010;60:79–86.10.2520/myco.60.79
  • Yoshinari T, Noda Y, Yoda K, et al. Inhibitory activity of blasticidin A, a strong aflatoxin production inhibitor, on protein synthesis of yeast: selective inhibition of aflatoxin production by protein synthesis inhibitors. J. Antibiot. 2010;63:309–314.10.1038/ja.2010.36
  • Yoshinari T, Sakuda S, Watanabe M, et al. New metabolic pathway for converting blasticidin S in Aspergillus flavus and inhibitory activity of aflatoxin production by blasticidin S metabolites. J. Agric. Food Chem. 2013;61:7925–7931.10.1021/jf402745c
  • Yan PS, Song Y, Sakuno E, et al. Cyclo(L-Leucyl-L-Prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl. Environ. Microbiol. 2004;70:7466–7473.10.1128/AEM.70.12.7466-7473.2004
  • Dutton MF, Anderson MS. Inhibition of aflatoxin biosynthesis by organophosphorous compounds. J. Food Prot. 1980;43:381–384.
  • Wheeler MH, Bhatnagar D, Rojas MG. Chlobenthiazone and tricyclazole inhibition of aflatoxin biosynthesis by Aspergillus flavus. Pestic. Biochem. Physiol. 1989;35:315–323.10.1016/0048-3575(89)90092-8
  • Sakuda S, Prabowo DF, Takagi K, et al. Inhibitory effects of respiration inhibitors on aflatoxin production. Toxins. 2014;6:1193–1200.10.3390/toxins6041193
  • Basimia T, Rezaee S, Zamanizadeh HR, et al. SAHA, histone deacetylase inhibitor causes reduction of aflatoxin production and conidiation in the Aspergillus flavus. Int. J. Biosci. 2013;3:9–16.
  • Lin JQ, Zhao XX, Wang CC, et al. 5-Azacytidine inhibits aflatoxin biosynthesis in Aspergillus flavus. Ann. Microbiol. 2013;63:763–769.10.1007/s13213-012-0531-7
  • Zhang JD, Han L, Yan S, et al. The non-metabolizable glucose analog D-glucal inhibits aflatoxin biosynthesis and promotes kojic acid production in Aspergillus flavus. BMC Microbiol. 2014;14:95/1–95/9.
  • Pestka JJ, Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev. 2005;8:39–69.10.1080/10937400590889458
  • Bai GH, Desjardins AE, Plattner RD. Deoxynivalenol-non-producing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia. 2001;153:91–98.
  • Kimura M, Tokai T, Takahashi-Ando N, et al. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci. Biotechnol. Biochem. 2007;71:2105–2123.10.1271/bbb.70183
  • Seong KY, Pasquali M, Zhou X, et al. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol. Microbiol. 2009;72:354–367.10.1111/mmi.2009.72.issue-2
  • Nasmith CG, Walkowiak S, Wang L, et al. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathog. 2011;7:e1002266.10.1371/journal.ppat.1002266
  • Desjardins AE, Plattner RD, Spencer GF. Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics. Phytochem. 1988;27:767–771.10.1016/0031-9422(88)84090-1
  • Desjardins AE, Plattner RP, Beremand MN. Ancymidol blocks trichorhecene biosynthesis and leads to accumulation of trichodiene in Fusarium sporotrichioides and Gibberella pulicaris. Appl. Environ. Micorobiol. 1987;53:1860–1865.
  • Alexander NJ, McCormick SP, Blackburn JA. Effects of xanthotoxin treatment on trichothecene production in Fusarium sporotrichioides. Can. J. Microbiol. 2008;54:1023–1031.10.1139/W08-100
  • Takahashi-Ando N, Ochiai N, Tokai T, et al. A screening system for inhibitors of trichothecene biosynthesis: hydroxylation of trichodiene as a target. Biotechnol. Lett. 2008;30:1055–1059.10.1007/s10529-008-9649-x
  • Zamir LO, Rotter B, Devor KA, et al. Target-oriented inhibitors of the late stages of trichothecene biosynthesis. 2. In vivo inhibitors and chick embryotoxicity bioassay. J. Agric. Food Chem. 1992;40:681–685.10.1021/jf00016a032
  • Hesketh AR, Gledhill L, Bycroft BW, et al. Potential inhibitors of trichothecene biosynthesis in Fusarium culmorum: epoxidation of a trichodiene derivative. Phytochemistry. 1993;32:93–104.
  • Miller JD, Fielder DA, Dowd PF, et al. Isolation of 4-acetyl-benzoxazolin-2-one (4-ABOA) and diferuloylputrescine from an extract of gibberella ear rot-resistant corn that blocks mycotoxin biosynthesis, and the insect toxicity of 4-ABOA and related compounds. Biochem. Syst. Ecol. 1996;24:647–658.10.1016/S0305-1978(96)00050-6
  • Bakan B, Bily AC, Melcion D, et al. Possible role of plant phenolics in the production of trichothcenes by Fusarium graminearum strains on different fractions of maize kernels. J. Agric. Food Chem. 2003;51:2826–2831.10.1021/jf020957g
  • Boutigny AL, Barreau C, Atanasova-Penichon V, et al. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res. 2009;113:746–753.10.1016/j.mycres.2009.02.010
  • Ponts N, Pinson-Gadais L, Boutigny AL, et al. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathol. 2011;101:929–934.10.1094/PHYTO-09-10-0230
  • Kulik T, Buśko M, Pszczółkowska A, et al. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett. Appl. Microbiol. 2014;59:99–107.10.1111/lam.2014.59.issue-1
  • Bollina V, Kushalappa AC. In vitro inhibition of trichothecene biosynthesis in Fusarium graminearum by resistance-related endogenous metabolites identified in barley. Mycology. 2011;2:291–296.
  • Qi PF, Johnston A, Balcerzak M, et al. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biol. 2012;116:413–426.10.1016/j.funbio.2012.01.001
  • Aristimuño Ficoseco MEA, Vattuone MA, Audenaert K, et al. Antifungal and antimycotoxigenic metabolites in Anacardiaceae species from northwest Argentina: isolation, identification and potential for control of Fusarium species. J. Appl. Microbiol. 2014;116:1262–1273.10.1111/jam.2014.116.issue-5
  • Pani G, Scherm B, Azara E, et al. Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J. Agric. Food Chem. 2014;62:4969–4978.10.1021/jf500647h
  • Roinestad KS, Montville TJ, Rosen JD. Inhibition of trichothecene biosynthesis in Fusarium tricinctum by sodium bicarbonate. J. Agric. Food Chem. 1993;41:2344–2346.10.1021/jf00036a024
  • Roinestad K, Montville TJ, Rosen JD. Mechanism for sodium bicarbonate inhibition of trichothecene biosynthesis in Fusarium tricinctum. J. Agric. Food Chem. 1994;42:2025–2028.10.1021/jf00045a036
  • Pinson-Gadais L, Richard-Forget F, Frasse P, et al. Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum. Mycopathologia. 2008;165:51–59.10.1007/s11046-007-9076-x
  • Vasavada AB, Hsieh DPH. Effects of metals on 3-acetyldeoxynivalenol production by Fusarium graminearum R2118 in submerged cultures. Appl. Environ. Microbiol. 1988;54:1063–1065.
  • Tsuyuki R, Yoshinari T, Sakamoto N, et al. Enhancement of trichothecene production in Fusarium graminearum by cobalt chloride. J. Agric. Food Chem. 2011;59:1760–1766.10.1021/jf103969d
  • Marín S, Velluti A, Ramos AJ, et al. Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain. Food Microbiol. 2004;21:313–318.10.1016/j.fm.2003.08.002
  • Yaguchi A, Yoshinari T, Tsuyuki R, et al. Isolation and identification of precocenes and piperitone from essential oils as specific inhibitors of trichothecene production by Fusarium graminearum. J. Agric. Food Chem. 2009;57:846–851.10.1021/jf802813h
  • Alertsen AR. Ageratochromene, a heterocyclic compound from the essential oils of some Ageratum Species. Acta Chem. Scand. 1955;9:1725–1726.10.3891/acta.chem.scand.09-1725
  • Bowers WS, Ohta T, Cleere JS, et al. Discovery of insect anti-juvenile hormones in plants. Science. 1976;193:542–547.10.1126/science.986685
  • Jiao F, Kawakami A, Nakajima T. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol. Lett. 2008;285:212–219.10.1111/fml.2008.285.issue-2
  • Sakamoto N, Tsuyuki R, Yoshinari T, et al. Correlation of ATP citrate lyase and acetyl CoA levels with trichothecene production in Fusarium graminearum. Toxins. 2013;5:2258–2269.10.3390/toxins5112258
  • Unnithan GC, Nair KK, Bowers WS. Precocene-induced degeneration of the corpus allatum of adult females of the bug Oncopeltus fasciatus. J. Insect Physiol. 1977;23:1081–1094.10.1016/0022-1910(77)90137-8
  • Piulachs MD, Cassier P, Bellés X. Ultrastructural changes induced by precocene II and 3,4-dihydroprecocene II in the corpora allata of Blattella germanica. Cell Tissue Res. 1989;258:91–99.
  • Hammond AH, Garle MJ, Fry JR. Mechanism of toxicity of precocene II in rat hepatocyte cultures. J. Biochem. Toxicol. 1995;10:265–273.10.1002/(ISSN)1522-7146
  • Furukawa T, Sakamoto N, Suzuki M, et al. Precocene II, a trichothecene production inhibitor, binds to voltage-dependent anion channel and increases the superoxide level in mitochondria of Fusarium graminearum. PLOS ONE. 2015;10:e0135031.10.1371/journal.pone.0135031
  • Blachly-Dyson E, Forte M. VDAC channels. IUBMB Life. 2001;52:113–118.
  • Han D, Antunes F, Canali R, et al. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 2003;278:5557–5563.10.1074/jbc.M210269200
  • Lustgarten MS, Bhattacharya A, Muller FL, et al. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem. Biophys. Res. Commun. 2012;422:515–521.10.1016/j.bbrc.2012.05.055
  • Ponts N, Pinson-Gadais L, Verdal-Bonnin MN, et al. Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol. Lett. 2006;258:102–107.10.1111/fml.2006.258.issue-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.