3,418
Views
42
CrossRef citations to date
0
Altmetric
Reviews

New application of Bacillus strains for optically pure l-lactic acid production: general overview and future prospects

, &
Pages 642-654 | Received 26 Jun 2015, Accepted 06 Sep 2015, Published online: 13 Nov 2015

References

  • Logan NA, De Vos P, Genus I. Bacillus. In: De Vos P, Garrity GM, Jones D, et al., ed. Vol. 3. Bergey’s manual of systematic bacteriology 2nd ed. Vol. 3. New York (NY): Springer; 2009. p. 21–128.
  • Parkouda C, Nielsen DS, Azokpota P, et al. The microbiology of alkaline-fermentation of indigenous seeds used as food condiments in Africa and Asia. Crit. Rev. Microbiol. 2009;35:139–156.10.1080/10408410902793056
  • Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004;50:1–17.10.1139/w03-076
  • Sauer U, Cameron DC, Bailey JE. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol. Bioeng. 1998;59:227–238.10.1002/(ISSN)1097-0290
  • Roh JY, Choi JY, Li MS, et al. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 2007;17:547–559.
  • Ogawa Y, Yamaguchi F, Yuasa K, et al. Efficient production of γ-polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci. Biotechnol. Biochem. 1997;61:1684–1687.10.1271/bbb.61.1684
  • Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013;31:877–902.10.1016/j.biotechadv.2013.04.002
  • Cutting SM. Bacillus probiotics. Food Microbiol. 2011;28:214–220.10.1016/j.fm.2010.03.007
  • Lucy M, Reed E, Glick BR. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek. 2004;86:1–25.10.1023/B:ANTO.0000024903.10757.6e
  • Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control. 2009;50:205–221.10.1016/j.biocontrol.2009.05.001
  • Poudel P, Miyamoto H, Miyamoto H, et al. Thermotolerant Bacillus kokeshiiformis sp. nov. isolated from marine animal resources compost. Int. J. Syst. Evol. Microbiol. 2014;64:2668–2674.10.1099/ijs.0.059329-0
  • Hofvendahl K, Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 2000;26:87–107.10.1016/S0141-0229(99)00155-6
  • Wee Y, Kim J, Ryu H. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 2006;44:163–172.
  • Castillo Martinez FA, Balciunas EM, Salgado JM. Lactic acid properties, applications and production: a review. Trends Food Sci. Technol. 2013;30:70–83.
  • John RP, Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl. Microbiol. Biotechnol. 2007;74:524–534.10.1007/s00253-006-0779-6
  • Ghaffar T, Irshad M, Anwar Z, et al. Recent trends in lactic acid biotechnology: a brief review on production to purification. J. Radiat. Res. Appl. Sci. 2014;7:222–229.10.1016/j.jrras.2014.03.002
  • De Boer JP, de Mattos MJT, Neijssel OM. d(−)Lactic acid production by suspended and aggregated continuous cultures of Bacillus laevolacticus. Appl. Microbiol. Biotechnol. 1990;34:149–153.10.1007/BF00166771
  • Sakai K, Ezaki Y. Open l-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J. Biosci. Bioeng. 2006;101:457–463.10.1263/jbb.101.457
  • Chen L, Zhou C, Liu G, et al. Application of lactic acid bacteria, yeast and Bacillus as feed additive in dairy cattles. J. Food Agri. Environ. 2013;11:22–25.
  • Danner H, Neureiter M, Madzingaidzo L, et al. Bacillus stearothermophilus for thermophilic production of l-lactic acid. Appl. Biochem. Biotechnol. 1998;70–72:895–903.10.1007/BF02920200
  • Calabia BP, Tokiwa Y, Aiba S. Fermentative production of l-(+)-lactic acid by an alkaliphilic marine microorganism. Biotechnol. Lett. 2011;33:1429–1433.10.1007/s10529-011-0573-0
  • Zhang ZY, Jin B, Kelly JM. Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J. 2007;35:251–263.10.1016/j.bej.2007.01.028
  • Kitpreechavanich V, Maneeboon T, Kayano Y, et al. Comparative characterization of l-lactic acid-producing thermotolerant Rhizopus fungi. J. Biosci. Bioeng. 2008;106:541–546.10.1263/jbb.106.541
  • Litchfield JH. Lactic acid, microbially produced. In: Schaechter Mosel O, editor. Encyclopedia of microbiology. Oxford: Academic Press; 2009. p. 362–372.
  • Mazzoli R, Bosco F, Mizrahi I, et al. Towards lactic acid bacteria-based biorefineries. Biotechnol. Adv. 2014;32:1216–1236.10.1016/j.biotechadv.2014.07.005
  • Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 2010;156:286–301.
  • Sakai K, Poudel P, Shirai Y. Advances in applied biotechnology. In: Petre M, editor. Total recycle system of food waste for poly-l-lactic acid output. Croatia: Intech; 2012. p. 23–40.
  • Vilain S, Luo Y, Hildreth MB, et al. Analysis of the life cycle of the soil Saprophyte Bacillus cereus in liquid soil extract and in soil. Appl. Environ. Microbiol. 2006;72:4970–4977.10.1128/AEM.03076-05
  • Hébert EM, Raya RR, De Giori GS. Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Curr. Microbiol. 2004;49:341–345.10.1007/s00284-004-4357-9
  • Florou-Paneri P, Christaki E, Bonos E. Lactic acid bacteria as source of funtional ingredients. In: Marcelino K, editor. Lactic acid bacteria- R & D for food, health and livestock purposes. Croatia: Intech; 2013. p. 589–614, doi: 10.5772/2825
  • Altaf M, Naveena BJ, Reddy G. Use of inexpensive nitrogen sources and starch for l(+) lactic acid production in anaerobic submerged fermentation. Bioresour. Technol. 2007;98:498–503.10.1016/j.biortech.2006.02.013
  • Heriban V. Process and metabolic characteristics of Bacillus coagulans as a lactic acid producer. Lett. Appl. Microbiol. 1993;16:243–246.10.1111/j.1472-765X.1993.tb01409.x
  • Poudel P, Tashiro Y, Miyamoto H, et al. Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07. J. Ind. Microbiol. Biotechnol. 2015;42:143–149.10.1007/s10295-014-1534-0
  • Wang Q, Zhao X, Chamu J, et al. Isolation, characterization and evolution of a new thermophilic Bacillus licheniformis for lactic acid production in mineral salts medium. Bioresour. Technol. 2011;102:8152–8158.10.1016/j.biortech.2011.06.003
  • Gao T, Ho KP. l-Lactic acid production by Bacillus subtilis MUR1 in continuous culture. J. Biotechnol. 2013;168:646–651.10.1016/j.jbiotec.2013.09.023
  • Gao T, Wong Y, Ng C, et al. l-Lactic acid production by Bacillus subtilis MUR1. Bioresour. Technol. 2012;121:105–110.10.1016/j.biortech.2012.06.108
  • Meng Y, Xue Y, Yu B, et al. Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour. Technol. 2012;116:334–339.10.1016/j.biortech.2012.03.103
  • Ou MS, Ingram LO, Shanmugam KT. l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J. Ind. Microbiol. Biotechnol. 2011;38:599–605.10.1007/s10295-010-0796-4
  • Ma K, Maeda T, You H, et al. Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresour. Technol. 2014;151:28–35.10.1016/j.biortech.2013.10.022
  • Tashiro Y, Kaneko W, Sun Y, et al. Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Appl. Microbiol. Biotechnol. 2011;89:1741–1750.10.1007/s00253-010-3011-7
  • Abdel-Rahman MA, Tashiro Y, Zendo T, et al. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiol. Lett. 2015;362:1–7.10.1093/femsle/fnu030
  • Ye L, Zhou X, Bin Hudari MS, et al. Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour. Technol. 2013;132:38–44.10.1016/j.biortech.2013.01.011
  • Ramos HC, Hoffmann T, Marino M, et al. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 2000;182:3072–3080.10.1128/JB.182.11.3072-3080.2000
  • Ou MS, Mohammed N, Ingram LO, et al. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl. Biochem. Biotechnol. 2009;155:379–385.
  • Fu W, Mathews AP. Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 1999;3:163–170.10.1016/S1369-703X(99)00014-5
  • Ntougias S, Russell NJ. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int. J. Syst. Evol. Microbiol. 2001;51:1161–1170.10.1099/00207713-51-3-1161
  • Domínguez JM, Vázquez M. Effect of the operational conditions on the l-lactic acid production by Rhizopus oryzae. Cienc. Tecnol. Aliment. 1999;2:113–118.10.1080/11358129909487590
  • Albert RA, Archambault J, Rosselló-Mora R, et al. Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int. J. Syst. Evol. Microbiol. 2005;55:2125–2130.10.1099/ijs.0.02337-0
  • Wang Y, Li Y, Pei X, et al. Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 2007;129:510–515.10.1016/j.jbiotec.2007.01.011
  • Peng L, Wang L, Che C, et al. Bacillus sp. strain P38: an efficient producer of l-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural. Bioresour. Technol. 2013;149:169–176.10.1016/j.biortech.2013.09.047
  • Zhao B, Wang L, Ma C. Repeated open fermentative production of optically pure l-lactic acid using a thermophilic Bacillus sp. strain. Bioresour. Technol. 2010;101:6494–6498.10.1016/j.biortech.2010.03.051
  • Walton SL, Bischoff KM, van Heiningen ARP, et al. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9. J. Ind. Microbiol. Biotechnol. 2010;37:823–830.10.1007/s10295-010-0727-4
  • Sakai K, Taniguchi M, Miura S, et al. Making plastics from garbage: a novel process for poly-l-lactate production from municipal food waste. J. Ind. Ecol. 2003;7:63–74.10.1162/108819803323059406
  • Wang L, Cai Y, Zhu L, et al. Major role of NAD-dependent lactate dehydrogenases in the production of l-lactic acid with high optical purity by the thermophile Bacillus coagulans. Appl. Environ. Microbiol. 2014;80:7134–7141.10.1128/AEM.01864-14
  • Sakai K, Fujii N, Chukeatirote E. Racemization of l-lactic acid in pH-swing open fermentation of kitchen refuse by selective proliferation of Lactobacillus plantarum. J. Biosci. Bioeng. 2006;102:227–232.10.1263/jbb.102.227
  • Tongpim S, Meidong R, Poudel P, et al. Isolation of thermophilic l-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition. J. Biosci. Bioeng. 2014;117:318–324.10.1016/j.jbiosc.2013.08.017
  • Bobillo M, Marshall VM. Effect of salt and culture aeration on lactate and acetate production by Lactobacillus plantarum. Food Microbiol. 1991;8:153–160.10.1016/0740-0020(91)90008-P
  • Quatravaux S, Remize F, Bryckaert E, et al. Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters. J. Appl. Microbiol. 2006;101:903–912.10.1111/jam.2006.101.issue-4
  • Patel MA, Ou MS, Harbrucker R, et al. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl. Environ. Microbiol. 2006;72:3228–3235.10.1128/AEM.72.5.3228-3235.2006
  • Patel M, Ou M, Ingram LO, et al. Fermentation of sugar cane bagasse hemicellulose hydrolysate to l(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnol. Lett. 2004;26:865–868.10.1023/B:bile.0000025893.27700.5c
  • Tanaka K, Komiyama A, Sonomoto K, et al. Two different pathways for d-xylose metabolism and the effect of xylose concentration on the yield coefficient of l-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl. Microbiol. Biotechnol. 2002;60:160–167.
  • Okano K, Tanaka T, Ogino C, et al. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl. Microbiol. Biotechnol. 2010;85:413–423.10.1007/s00253-009-2280-5
  • Xiao Z, Wu M, Beauchemin M, et al. Direct fermentation oftriticale starch to lactic acid by Rhizopus oryzae. Ind. Biotechnol. 2011;7:129–134.10.1089/ind.2011.7.129
  • Maas RHW, Springer J, Eggink G, et al. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on l(+)-lactic acid production. J. Ind. Microbiol. Biotechnol. 2008;35:569–578.10.1007/s10295-008-0318-9
  • De Clerck E, Vanhoutte T, Hebb T, et al. Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Syst. Appl. Microbiol. 2004;27:50–60.
  • Su F, Xu P. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Sci. Rep. 2014;4:1–10.
  • Anuj KC, Silvio SS, Om VS. Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: Marco Aurelio DBS, editor. Biofuel production-recent developments and prospects. Croatia: Intech; 2011, p. 225–246.
  • Saha B. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003;30:279–291.10.1007/s10295-003-0049-x
  • Neureiter M, Danner H, Madzingaidzo L, et al. Lignocellulose feedstocks for the production of lactic acid. Chem. Biochem. Eng. Q. 2004;18:55–63.
  • Pandey A, Soccol CR, Nigam P, et al. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 2000;74:69–80.10.1016/S0960-8524(99)00142-X
  • Maas RHW, Bakker RR, Jansen MLA, et al. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate. Appl. Microbiol. Biotechnol. 2008;78:751–758.10.1007/s00253-008-1361-1
  • Budhavaram NK, Fan Z. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresour. Technol. 2009;100:5966–5972.10.1016/j.biortech.2009.01.080
  • Bischoff KM, Liu S, Hughes SR, et al. Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnol. Lett. 2010;32:823–828.10.1007/s10529-010-0222-z
  • Wang L, Zhao B, Liu B, et al. Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour. Technol. 2010;101:7908–7915.10.1016/j.biortech.2010.05.031
  • Ye L, Bin Hudari MS, Zhi L, et al. Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem. Eng. J. 2013;83:16–21.
  • Ye L, Bin Hudari MS, Zhou X, et al. Conversion of acid hydrolysate of oil palm empty fruit bunch to l-lactic acid by newly isolated Bacillus coagulans JI12. Appl. Microbiol. Biotechnol. 2013;97:4831–4838.10.1007/s00253-013-4788-y
  • Wang L, Xue Z, Zhao B, et al. Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresour. Technol. 2013;130:174–180.10.1016/j.biortech.2012.11.144
  • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000;74:25–33.10.1016/S0960-8524(99)00161-3
  • Zhang Y, Chen X, Qi B, et al. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresour. Technol. 2014;163:160–166.
  • Guo W, Jia W, Li Y, et al. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Appl. Biochem. Biotechnol. 2010;161:124–136.10.1007/s12010-009-8857-8
  • Boguta A, Bringel F, Martinussen J, et al. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks. Microb. Cell Fact. 2014;13:1–16.10.1186/s12934-014-0097-0
  • Dumbrepatil A, Adsul M, Chaudhari S, et al. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 2008;74:333–335.10.1128/AEM.01595-07
  • Payot T, Chemaly Z, Fick M. Lactic acid production by Bacillus coagulans—kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microb. Technol. 1999;24:191–199.10.1016/S0141-0229(98)00098-2
  • Xu K, Xu P. Betaine and beet molasses enhance l-lactic acid production by Bacillus coagulans. PLoS One. 2014;9:e100731.10.1371/journal.pone.0100731
  • Shimizu-Kadota M, Kato H, Shiwa Y, et al. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of l-lactic acid. Biosci. Biotechnol. Biochem. 2014;77:1804–1808.
  • Im DHK, Orimoto NM, Aburi WS, et al. Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31. Biosci. Biotechnol. Biochem. 2012;76:1378–1383.
  • Zhou X, Ye L, Wu JC. Efficient production of l-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Appl. Microbiol. Biotechnol. 2013;97:4309–4314.10.1007/s00253-013-4710-7
  • Sakai K. Production of optically active lactic acid by using non-LAB microorganisms. In: Ohara H, Kimura Y, editors. White biotechnology; the front of energy and material development. Tokyo: CMC Publisher; 2008. p. 98–108. ( Japanese).
  • Combet-Blanc Y, Ollivier B, Streicher C, et al. Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int. J. Syst. Bacteriol. 1995;45:9–16.10.1099/00207713-45-1-9
  • Sakai K, Yamanami T. Thermotolerant Bacillus licheniformis TY7 produces optically active l-lactic acid from kitchen refuse under open condition. J. Biosci. Bioeng. 2006;102:132–134.10.1263/jbb.102.132
  • Xue Z, Wang L, Ju J, et al. Efficient production of polymer-grade l-lactic acid from corn stover hydrolyzate by thermophilic Bacillus sp. strain XZL4. SpringerPlus. 2012;1:1–7.
  • Ouyang J, Ma R, Zheng Z, et al. Open fermentative production of l-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresour. Technol. 2013;135:475–480.10.1016/j.biortech.2012.09.096
  • Qin J, Zhao B, Wang X, et al. Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS One. 2009;4:e4359.
  • Xu K, Xu P. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour. Technol. 2013;153:23–29.
  • Kovács AT, van Hartskamp M, Kuipers OP, et al. Genetic tool development for a new host for biotechnology, the thermotolerant bacterium Bacillus coagulans. Appl. Environ. Microbiol. 2010;76:4085–4088.10.1128/AEM.03060-09
  • Zhang XZ, Sathitsuksanoh N, Zhu Z, et al. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab. Eng. 2011;13:364–372.10.1016/j.ymben.2011.04.003
  • Mazumdar S, Clomburg JM, Gonzalez R. Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl. Environ. Microbiol. 2010;76:4327–4336.10.1128/AEM.00664-10
  • Ishida N, Saitoh S, Tokuhiro K, et al. Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl. Environ. Microbiol. 2005;71:1964–1970.10.1128/AEM.71.4.1964-1970.2005
  • Wang Q, Ingram LO, Shanmugam KT. Evolution of l-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for d-lactate production from lignocellulose. Proc. Natl. Acad. Sci. USA. 2011;108:18920–18925.10.1073/pnas.1111085108
  • Romero S, Merino E, Bolivar F, et al. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl. Environ. Microbiol. 2007;73:5190–5198.10.1128/AEM.00625-07
  • Hirata M, Kimura Y. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions. Polymer. 2008;49:2656–2661.10.1016/j.polymer.2008.04.014
  • Nishida H, Fan Y, Mori T, et al. Feedstock recycling of flame-resisting poly (lactic acid)/ aluminum hydroxide composite to l, l–lactide. Polym. Degrad. Stab. 2004;86:197–208.
  • Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 2010;51:1412–1421.10.1016/j.enconman.2010.01.015
  • Tashiro Y, Matsumoto H, Miyamoto H, et al. A novel production process for optically pure l-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresour. Technol. 2013;146:672–681.10.1016/j.biortech.2013.07.102
  • Endres JR, Clewell A, Jade KA, et al. Safety assessment of a proprietary preparation of a novel Probiotic, Bacillus coagulans, as a food ingredient. Food Chem. Toxicol. 2009;47:1231–1238.10.1016/j.fct.2009.02.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.