680
Views
10
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Cell wall reconstruction and DNA damage repair play a key role in the improved salt tolerance effects of He-Ne laser irradiation in tall fescue seedlings

, &
Pages 682-693 | Received 30 Jun 2015, Accepted 22 Sep 2015, Published online: 26 Oct 2015

References

  • Albersheim P, An J, Freshour G, et al. Structure and functions studies plant cell wall polysaccharides. Biochem. Soc. Trans. 1994;22:374–378.10.1042/bst0220374
  • Mierczyńska J, Cybulska J, Sołowiej B, et al. Effect of Ca2+, Fe2+ and Mg2+ on rheological properties of new food matrix made of modified cell wall polysaccharides from apple. Carbohyd. Polym. 2015;133:547–555.10.1016/j.carbpol.2015.07.046
  • Martínez-Sanz M, Gidley MJ, Gilbert EP. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review. Carbohyd. Polym. 2015;125:120–134.10.1016/j.carbpol.2015.02.010
  • Domon JM, Baldwin L, Acket S. Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry. 2013;85:51–61.10.1016/j.phytochem.2012.09.001
  • Fernandes JC, García-Angulo P, Goulao LF. Mineral stress affects the cell wall composition of grapevine(Vitis vinifera L.) callus. Plant Sci. 2013;205:111–120.10.1016/j.plantsci.2013.01.013
  • Zagorchev L, Kamenova P, Odjakova M. The role of plant cell wall proteins in response to salt stress. Sci. World J. 2014. Available from: http://dx.doi.org/10.1155/2014/764089
  • Hoson T, Wakabayashi K. Role of the plant cell wall in gravity resistance. Phytochemistry. 2015;112:84–90.10.1016/j.phytochem.2014.08.022
  • Francoz E, Ranocha P, Nguyen-Kim H, et al. Roles of cell wall peroxidases in plant development. Phytochemistry. 2015;112:15–21.10.1016/j.phytochem.2014.07.020
  • Doblin MS, Pettolino F, Bacic A. Evans Review: Plant cell walls: the skeleton of the plant world. Funct. Plant Biol. 2010;37:357–381.10.1071/FP09279
  • de Lima RB, dos Santos TB, Vieira LGE, et al. Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohyd. Polym. 2014;112:686–694.10.1016/j.carbpol.2014.06.042
  • Altartouri B, Geitmann A. Understanding plant cell morphogenesis requires real-time monitoring of cell wall polymers. Curr. Opinin. Plant Biol. 2015;23:76–82.10.1016/j.pbi.2014.11.007
  • Vogel J. Unique aspects of the grass cell wall. Curr. Opinin. Plant Biol. 2008;11:301–307.10.1016/j.pbi.2008.03.002
  • Ye ZH, York WS, Darvill AG. Important new players in secondary wall synthesis. Trends Plant Sci. 2006;11:162–164.10.1016/j.tplants.2006.02.001
  • Oh C-S, Kim H, Lee C. Rice cell wall polysaccharides: structure and biosynthesis. J. Plant Biol. 2013;56:274–282.10.1007/s12374-013-0236-x
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008;59:651–681.10.1146/annurev.arplant.59.032607.092911
  • Rady MM. Mohamed Gamal F. Modulation of salt stress effects on the growth, physio-chemicalattributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015;193:105–113.10.1016/j.scienta.2015.07.003
  • Alvarez-Gerding X, Espinoza C, Inostroza-Blancheteau C, et al. Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiol. Biochem. 2015;92:71–80.10.1016/j.plaphy.2015.04.005
  • Chen H, Cao S, Fang X, et al. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Sci. Hortic. 2015;188:44–48.10.1016/j.scienta.2015.03.018
  • Xavier R. Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. J. Stress Physiol. Biochem. 2011;7:157–174.
  • Zhen A, Bie Z, Huang Y. Effects of salt-tolerant rootstock grafting on ultrastructure, photosynthetic capacity, and H2O2-scavenging system in chloroplasts of cucumber seedlings under NaCl stress. Acta Physiol. Plant. 2011;33:2311–2319.10.1007/s11738-011-0771-3
  • Neves GYS, Marchiosi R, Ferrarese MLL, et al. Root growth inhibition and lignification induced by salt stress in soybean. J. Agron. Crop Sci. 2010;196:467–473.10.1111/jac.2010.196.issue-6
  • Qiu ZB, Liu X, Tian XJ, et al. Effects of CO2 laser pretreatment on drought stress resistance in wheat. J. Photochem. Photobiol. B: Biol. 2008;90:17–25.10.1016/j.jphotobiol.2007.09.014
  • Qiu ZB, Li JT, Yue M. The damage repair role of He–Ne laser on wheat exposed to osmotic stress. Can. J. Plant Sci. 2010;90:691–698.10.4141/CJPS09118
  • Perveen R, Jamil Y, Ashraf M, et al. He–Ne laser-induced improvement in biochemical, physiological, growth and yield characteristics in sunflower (Helianthus annuus L.). Photochem. Photobiol. 2011;87:1453–1463.10.1111/php.2011.87.issue-6
  • Qiu ZB, Li JT, Zhang MM, et al. He–Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stress. Ecotox. Environ. Safe. 2013;88:135–141.10.1016/j.ecoenv.2012.11.001
  • Gao LM, Li YF, Han R. He–Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions. Protoplasma. 2015;252:1135–1148.10.1007/s00709-014-0748-3
  • Chen YP. Isatis indigotica seedlings derived from laser stimulated seeds showed improved resistance to elevated UV-B. Plant Growth Regul. 2008;55:73–79.10.1007/s10725-008-9258-7
  • Yang LY, Han R, Sun Y. Damage repair effect of He–Ne laser on wheat exposed to enhanced ultraviolet-B radiation. Plant Physiol. Biochem. 2012;57:218–221.10.1016/j.plaphy.2012.06.003
  • Chen HZ, Han R. He–Ne laser influenced actin filaments alleviate the damage of UV-B in wheat. Laser Phys. 2015;25:5601.
  • Chen YP, Jia JF, Yue M. Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress. Photochem. Photobiol. 2010;86:600–605.10.1111/php.2010.86.issue-3
  • Laspina NV, Groppa MD, Tomaro MT, et al. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci. 2005;169:323–330.10.1016/j.plantsci.2005.02.007
  • Miyake H, Mitsuya S, Rahman MDS. Ultrastructural effects of salinity stress in higher plants. In: Rai AK, Takabe T, editors. Abiotic stress tolerance in plants. Netherlands: Springer; 2006. p. 215–226.
  • Andrea B, Tani C. Ultrastructural effects of salinity in Nicotiana bigelovii var. bigelovii callus cells and Allium cepa roots. Caryologia. 2009;62:124–133.10.1080/00087114.2004.10589677
  • Xu YF, Sun XL, Jin JW, et al. Protective effect of nitric oxide on high light-induced oxidative damage in leaves of tall fescue. J. Plant Physiol. 2010;167:512–518.10.1016/j.jplph.2009.10.010
  • Xu Y, Fu J, Chu X, et al. Nitric oxide mediates abscisic acid induced light-tolerance in leaves of tall fescue under high-light stress. Sci. Hortic. 2013;162:1–10.10.1016/j.scienta.2013.07.042
  • Zhao L, He JX, Wang XM, et al. Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J. Plant Physiol. 2008;165:182–191.10.1016/j.jplph.2007.03.002
  • Albini FM, Murelli C, Patritti G, et al. Low-molecular weight substances from the resurrection plant Sporobolus stapfianus. Phytochemistry. 1994;37:137–142.10.1016/0031-9422(94)85013-5
  • Zhao X, Moates GK, Wellner N, et al. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohyd. Polym. 2014;111:410–418.10.1016/j.carbpol.2014.04.079
  • Chen XQ, Fang YP, Nishinari K, et al. Physicochemical characteristics of polysaccharide conjugates prepared from fresh tea leaves and their improving impaired glucose tolerance. Carbohyd. Polym. 2014;112:77–84.10.1016/j.carbpol.2014.05.030
  • Chen HZ, Han R. He–Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation. Laser Phys. 2014;24. Available from: http://doi:10.1088/1054-660X/24/10/105602
  • Chanaj-Kaczmarek J, Wysocki M, Karachitos A, et al. Effects of plant extract antioxidative phenolic compounds on energetic status and viability of Saccharomyces cerevisiae cells undergoing oxidative stress. J. Funct. Foods. 2015;16:367–377.
  • Zhang XG, Wang YH, Han C, et al. Effects of trehalose supplementation on cell viability and oxidative stress variables in frozen-thawed bovine calf testicular tissue. Cryobiology. 2015;70:246–252.10.1016/j.cryobiol.2015.03.004
  • Gandhi A, Shah NP. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry. Food Microbiol. 2015;49:197–202.10.1016/j.fm.2015.02.003
  • Yi S, Chen Y, Wen L, et al. Downregulation of nucleoporin 88 and 214 induced by oridonin may protect OCIM2 acute erthroleukemia cells from apoptosis through regulation of nucleocytoplasmic transport of NF-kB. Int. J. Mol. Med. 2012;30:877–883.
  • Peng Y, Zheng Y, Zhang Y, et al. Different effects of omega-3 fatty acids on the cell cycle in C2C12 myoblast proliferation. Mol. Cell Biochem. 2012;367:165–173.10.1007/s11010-012-1329-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.