2,539
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations

, , , , , & show all
Pages 655-668 | Received 21 Jul 2015, Accepted 29 Sep 2015, Published online: 13 Nov 2015

References

  • Saeki A, Theeragool G, Matsushita K, et al. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci. Biotech. Biochem. 1997;61:138–145.
  • Moonmangmee D, Adachi O, Ano Y, et al. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci. Biotechnol. Biochem. 2000;64:2306–2315.10.1271/bbb.64.2306
  • Limtong S, Sringiew C, Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 2007;98:3367–3374.10.1016/j.biortech.2006.10.044
  • Manaia CM, Moore ER. Pseudomonas thermotolerans sp. nov., a thermotolerant species of the genus Pseudomonas sensu stricto. Int. J. Syst. Evol. Microbiol. 2002;52:2203–2209.
  • Ndoye B, Lebecque S, Dubois-Dauphin R, et al. Thermoresistant properties of acetic acid bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb. Technol. 2006;39:916–923.10.1016/j.enzmictec.2006.01.020
  • Sikorski J, Brambilla E, Kroppenstedt RM, et al. The temperature-adaptive fatty acid content in Bacillus simplex strains from ‘Evolution Canyon’, Israel. Microbiology. 2008;154:2416–2426.10.1099/mic.0.2007/016105-0
  • Illeghems K, De Vuyst L, Weckx S. Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics. 2013;14:526. doi: 10.1186/1471-2164-14-526.
  • Ohmori S, Masai H, Arima K, et al. Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. Agric. Biol. Chem. 1980;44:2901–2906.10.1271/bbb1961.44.2901
  • Sallstrom B, Andersson SG. Genome reduction in the alpha-proteobacteria. Curr. Opin. Microbiol. 2005;8:579–585.
  • Nobusato A, Uchiyama I, Ohashi S, et al. Insertion with long target duplication: a mechanism for gene mobility suggested from comparison of two related bacterial genomes. Gene. 2000;259:99–108.10.1016/S0378-1119(00)00456-X
  • Azuma Y, Hosoyama A, Matsutani M, et al. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 2009;37:5768–5783.10.1093/nar/gkp612
  • Sjödin A, Svensson K, Lindgren M, et al. Whole-genome sequencing reveals distinct mutational patterns in closely related laboratory and naturally propagated Francisella tularensis strains. PLoS One. 2010;5:e11556.10.1371/journal.pone.0011556
  • Rudolph B, Gebendorfer KM, Buchner J, et al. Evolution of Escherichia coli for growth at high temperatures. J. Biol. Chem. 2010;285:19029–19034.10.1074/jbc.M110.103374
  • Rodriguez-Verdugo A, Carrillo-Cisneros D, Gonzalez-Gonzalez A, et al. Different tradeoffs result from alternate genetic adaptations to a common environment. Proc. Nat. Acad. Sci. USA. 2014;111:12121–12126.
  • Wallace-Salinas V, Gorwa-Grauslund MF. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol. Biofuels. 2013;6:151. doi: 10.1186/1754-6834-6-151.10.1186/1754-6834-6-151
  • Caspeta L, Chen Y, Ghiaci P, et al. Biofuels. Altered sterol composition renders yeast thermotolerant. Science. 2014;346:75–78.10.1126/science.1258137
  • Matsutani M, Nishikura M, Saichana N, et al. Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J. Biotechnol. 2013;165:109–119.10.1016/j.jbiotec.2013.03.006
  • Sootsuwan K, Lertwattanasakul N, Thanonkeo P, et al. Analysis of the respiratory chain in ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. J. Mol. Microbiol. Biotechnol. 2008;14:163–175.10.1159/000112598
  • Lambert B, Kersters K, Gosselé F, et al. Gluconobacters from honey bees. Antonie Van Leeuwenhoek. 1981;47:147–157.10.1007/BF02342197
  • Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int. J. Food Microbiol. 2008;125:15–24.10.1016/j.ijfoodmicro.2007.11.077
  • Adachi O, Moonmangmee D, Toyama H, et al. New developments in oxidative fermentation. Appl. Microbiol. Biotechnol. 2003;60:643–653.10.1007/s00253-002-1155-9
  • Beppu T. Genetic organization of Acetobacter for acetic acid fermentation. Antonie Van Leeuwenhoek. 1993;64:121–135.
  • Steiner P, Sauer U. Proteins induced during adaptation of Acetobacter aceti to high acetate concentrations. Appl. Environ. Microbiol. 2001;67:5474–5481.10.1128/AEM.67.12.5474-5481.2001
  • Takemura H, Horinouchi S, Beppu T. Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J. Bacteriol. 1991;173:7070–7076.
  • Coucheron DH. An Acetobacter xylinum insertion sequence element associated 21, lin inactivation of cellulose production. J. Bacteriol. 1991;173:5723–5731.
  • Matsutani M, Ito K, Azuma Y, et al. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl. Microbiol. Biotechnol. 2015;99:7229–7240.10.1007/s00253-015-6598-x
  • Greenberg DE, Porcella SF, Zelazny AM, et al. Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J. Bacteriol. 2007;189:8727–8736.10.1128/JB.00793-07
  • Kawai M, Higashiura N, Hayasaki K, et al. Complete genome and gene expression analyses of Asaia bogorensis reveal unique response to culture with mammalian cells as a potential opportunistic human pathogen. DNA Res. 2015;22:357–366.
  • Martin P, Makepeace K, Hill SA, et al. Microsatellite instability regulates transcription factor binding and gene expression. Proc. Nat. Acad. Sci. USA. 2005;102:3800–3804.10.1073/pnas.0406805102
  • Iyer RR, Pluciennik A, Rosche WA, et al. DNA polymerase III proofreading mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli. J. Biol. Chem. 2000;275:2174–2184.10.1074/jbc.275.3.2174
  • Casane D, Dennebouy N, de Rochambeau H, et al. Genetic analysis of systematic mitochondrial heteroplasmy in rabbits. Genetics. 1994;138:471–480.
  • Kanchanarach W, Theeragool G, Yakushi T, et al. Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl. Microbiol. Biotechnol. 2010;85:741–751.10.1007/s00253-009-2203-5
  • Davies SJ, Golby P, Omrani D, et al. Inactivation and regulation of the aerobic C4-dicarboxylate transport (dctA) gene of Escherichia coli. J. Bacteriol. 1999;181:5624–5635.
  • Soemphol W, Deeraksa A, Matsutani M, et al. Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci. Biotechnol. Biochem. 2011;75:1921–1928.10.1271/bbb.110310
  • Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 1999;7:410–413.10.1016/S0966-842X(99)01589-9
  • Jennings MP, Anderson JK, Beacham IR. Cloning and molecular analysis of the Salmonella enterica ansP gene, encoding an L-asparagine permease. Microbiology. 1995;141:141–146.10.1099/00221287-141-1-141
  • Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microb. Physiol. 1994;36:247–301.10.1016/S0065-2911(08)60181-2
  • Perumpuli PA, Watanabe T, Toyama H. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka. Biosci. Biotechnol. Biochem. 2014;78:533–541.10.1080/09168451.2014.882758
  • Hattori H, Yakushi T, Matsutani M, et al. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Appl. Microbiol. Biotechnol. 2012;95:1531–1540.10.1007/s00253-012-4005-4
  • Seo JS, Chong H, Park HS, et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 2005;23:63–68.10.1038/nbt1045
  • Sprenger GA. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol. Lett. 1996;145:301–307.10.1111/fml.1996.145.issue-3
  • Rogers PL, Lee KL, Tribe DE. High productivity ethanol fermentations with Zymomonas mobilis. Process Biochem. 1980;15:7–11.
  • Thanonkeo P. Effect of ethanol and heat stress on physiological responses in Zymomonas mobilis. In: Yamada M, editor. Survival and death in bacteria. Kerala: Research Signpost; 2005. p. 183–196.
  • Sootsuwan K, Irie A, Murata M, et al. Thermotolerant Zymomonas mobilis: comparison of ethanol fermentation capability with that of an efficient type strain. Open Biotechnol. J. 2007;1:59–65.10.2174/1874070700701010059
  • Desiniotis A, Kouvelis VN, Davenport K, et al. Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J. Bacteriol. 2012;194:5966–5967.10.1128/JB.01398-12
  • Kouvelis VN, Teshima H, Bruce D, et al. Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol producer. Genome Announc. 2014;2:e00845-13.
  • Yamada M, Akada R, Kosaka T, et al. Molecular mechanisms of thermotolerance of thermotolerant fermentation microorganisms. Kagakutoseibuts. Japanese. 2015;53:763–773.
  • Murata M, Fujimoto H, Nishimura K, et al. Molecular strategy for survival at a critical high temperature in Eschierichia coli. PLoS One. 2011;6:e20063.10.1371/journal.pone.0020063
  • Noor R, Murata M, Yamada M. Oxidative stress as a trigger for growth phase-specific sigmaE-dependent cell lysis in Escherichia coli. J. Mol. Microbiol. Biotechnol. 2009;17:177–187.10.1159/000236029
  • Davies BW, Kohanski MA, Simmons LA, et al. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol. Cell. 2009;36:845–860.10.1016/j.molcel.2009.11.024
  • Hayashi T, Furuta Y, Furukawa K. Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. J. Biosci. Bioeng. 2011;111:414–419.10.1016/j.jbiosc.2010.12.009
  • Charoensuk K, Irie A, Lertwattanasakul N, et al. Physiological importance of cytochrome c peroxidase in ethanologenic thermotolerant Zymomonas mobilis. J. Mol. Microbiol. Biotechnol. 2011;20:70–82.10.1159/000324675
  • Thanonkeo P, Laopiboon P, Sootsuwan K, et al. Magnesium ions improve growth and ethanol production of Zymomonas mobilis under heat or ethanol stress. Biotechnology. 2007;6:112–119.
  • Sootsuwan K, Thanonkeo P, Keeratirakha N, et al. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol. Biofuels. 2013;6:180. doi: 10.1186/1754-6834-6-180.10.1186/1754-6834-6-180
  • Banat IM, Nigam P, Singh D, et al. Ethanol production at elevated temperature and alcohol concentrations: Part I-Yeasts in general. World J. Microbiol. Biotechnol. 1998;14:809–821.10.1023/A:1008802704374
  • Abdel-Banat BM, Hoshida H, Ano A, et al. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl. Microb. Biotechnol. 2010;85:861–867.10.1007/s00253-009-2248-5
  • Ryabova OB, Chmil OM, Sibirny AA. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res. 2003;4:157–164.10.1016/S1567-1356(03)00146-6
  • Yuangsaard N, Yongmanitchai W, Yamada M, et al. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie Van Leeuwenhoek. 2013;103:577–588.10.1007/s10482-012-9842-8
  • Tanimura A, Nakamura T, Watanabe I, et al. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SpringerPlus. 2012;1:27. doi:10.1186/2193-1801-1-27.
  • Banat IM, Nigam P, Marchant R. Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J. Microbiol. Biotechnol. 1992;8:259–263.10.1007/BF01201874
  • Anderson PJ, McNeil K, Watson K. High-efficiency carbohydrate fermentation to ethanol at temperatures above 40 degrees C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl. Environ. Microbiol. 1986;51:1314–1320.
  • Nonklang S, Abdel-Banat BM, Cha-aim K, et al. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl. Environ. Microbiol. 2008;74:7514–7521.10.1128/AEM.01854-08
  • Research and Development of Cost-effective Fermentation Technology Using a Thermotolerant Yeast (FY2007–FY2010) Final Report: citied on 2011.06.29. http://www.nedo.go.jp/library/seika/shosai_201106/20110000000963.html. Japanese.
  • Lertwattanasakul N, Kosaka T, Hosoyama A, et al. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol. Biofuels. 2015;8:47. doi: 10.1186/s13068-015-0227-x.10.1186/s13068-015-0227-x
  • Yarimizu T, Nonklang S, Nakamura J, et al. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae. Yeast. 2013;30:485–500.10.1002/yea.v30.12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.