1,275
Views
9
CrossRef citations to date
0
Altmetric
Award Reviews

Structure–activity relationship of crustacean peptide hormonesFootnote

Pages 633-641 | Received 25 Sep 2015, Accepted 29 Oct 2015, Published online: 01 Dec 2015

References

  • Takei Y, Ando H, Tsutsui K, editors. Handbook of hormones-comparative endocrinology for basic and clinical research. Oxford: Academic Press; 2016.
  • Keller R. Crustacean neuropeptides: structures, functions and comparative aspects. Experientia. 1992;48:439–448.10.1007/BF01928162
  • Lacombe C, Grève P, Martin G. Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides. 1999;33:71–80.10.1054/npep.1999.0016
  • Webster SG, Keller R, Dircksen H. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. Gen. Comp. Endocrinol. 2012;175:217–233.10.1016/j.ygcen.2011.11.035
  • Martin G, Sorokine O, Van Dorsselaer A. Isolation and molecular characterization of a hyperglycemic neuropeptide from the sinus gland of the terrestrial isopod Armadillidium vulgare (Crustacea). Eur. J. Biochem. 1993;211:601–607.10.1111/ejb.1993.211.issue-3
  • Ohira T, Makabe K, Suzuki M, et al. Purification and structural determination of crustacean hyperglycemic hormone (CHH) from mantis shrimp Oratosquilla oratoria. Sci. J. Kanagawa Univ. 2009;20:51–55.
  • Skinner DM. Molting and regulation. In: Bliss DE, Mantel LH, editors. The Biology of Crustacea. Vol. 9. New York, NY: Academic Press; 1985. p. 43–146.
  • Webster SG. Amino acid sequence of putative molt-inhibiting hormone from the crab Carcinus maenas. Proc. R. Soc. Lond. B. 1991;244:247–252.10.1098/rspb.1991.0078
  • Nakatsuji T, Lee CY, Watson RD. Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009;152:139–148.10.1016/j.cbpa.2008.10.012
  • Audsley N, McIntosh C, Phillips JE. Isolation of a neuropeptide from locust corpus cardiacum which influences ileal transport. J. Exp. Biol. 1992;173:261–274.
  • Endo H, Nagasawa H, Watanabe T. Isolation of a cDNA encoding a CHH-family peptide from the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2000;30:355–361.10.1016/S0965-1748(99)00129-0
  • Drexler AL, Harris CC, dela Pena MG, et al. Molecular characterization and cell-specific expression of an ion transport peptide in the tobacco hornworm, Manduca sexta. Cell Tissue Res. 2007;329:391–408.10.1007/s00441-007-0391-9
  • Gasparini S, Kiyatkin N, Drevet P, et al. The low molecular weight protein which co-purifies with α-latrotoxin is structurally related to crustacean hyperglycemic hormones. J. Biol. Chem. 1994;269:19803–19809.
  • Charniaux-Cotton H. Discovery in an amphipod crustacean (Orchestia gammarella) of an endocrine gland responsible for the differentiation of primary and secondary male sex characteristics. C. R. Acad. Sci. Paris. 1954;239:780–782.
  • Martin G, Sorokine O, Moniatte M, et al. The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. Eur. J. Biochem. 1999;262:727–736.10.1046/j.1432-1327.1999.00442.x
  • Okuno A, Hasegawa Y, Ohira T, et al. Characterization and cDNA cloning of androgenic gland hormone of the terrestrial isopod Armadillidium vulgare. Biochem. Biophys. Res. Commun. 1999;264:419–423.10.1006/bbrc.1999.1522
  • Ohira T, Hasegawa Y, Tominaga S, et al. Molecular cloning and expression analysis of cDNAs encoding androgenic gland hormone precursors from two porcellionidae species, Porcellio scaber and P. dilatatus. Zool. Sci. 2003;20:75–81.10.2108/zsj.20.75
  • Cerveau N, Bouchon D, Bergès T, et al. Molecular evolution of the androgenic hormone in terrestrial isopods. Gene. 2014;540:71–77.10.1016/j.gene.2014.02.024
  • Manor R, Weil S, Oren S, et al. Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen. Comp. Endocrinol. 2007;150:326–336.10.1016/j.ygcen.2006.09.006
  • Ventura T, Manor R, Aflalo ED, et al. Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology. 2009;150:1278–1286.10.1210/en.2008-0906
  • Chung JS, Manor R, Sagi A. Cloning of an insulin-like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: implications for eyestalk regulation of IAG expression. Gen. Comp. Endocrinol. 2011;173:4–10.10.1016/j.ygcen.2011.04.017
  • Banzai K, Ishizaka N, Asahina K, et al. Molecular cloning of a cDNA encoding insulin-like androgenic gland factor from the kuruma prawn Marsupenaeus japonicus and analysis of its expression. Fish. Sci. 2011;77:329–335.10.1007/s12562-011-0337-8
  • Kegel G, Reichwein B, Weese S, et al. Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS Lett. 1989;255:10–14.10.1016/0014-5793(89)81051-8
  • Soyez D, Le Caer JP, Noel PY, et al. Primary structure of two isoforms of the vitellogenesis inhibiting hormone from the lobster Homarus americanus. Neuropeptides. 1991;20:25–32.10.1016/0143-4179(91)90036-I
  • Liu L, Laufer H. Isolation and characterization of sinus gland neuropeptides with both mandibular organ inhibiting and hyperglycemic effects from the spider crab Libinia emarginata. Arch. Insect Biochem. Physiol. 1996;32:375–385.10.1002/(ISSN)1520-6327
  • Chung JS, Dircksen H, Webster SG. A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc. Natl. Acad. Sci. USA. 1999;96:13103–13107.10.1073/pnas.96.23.13103
  • Dircksen H, Böcking D, Heyn U, et al. Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem. J. 2001;356:159–170.10.1042/bj3560159
  • Chen S-H, Lin C-Y, Kuo CM. Cloning of two crustacean hyperglycemic hormone isoforms in freshwater giant prawn (Macrobrachium rosenbergii): evidence of alternative splicing. Marine Biotechnol. 2004;6:83–94.10.1007/s10126-003-0014-8
  • Nagasawa H, Yang W-J, Aida K, et al Chemical and biological characterization of neuropeptides in the sinus glands of the kuruma prawn, Penaeus japonicus. In: Shimonishi Y, editor. Peptide Science-Present and Future. Kluwer: Academic Publisher; 1999. p. 453–454.
  • Yang W-J, Aida K, Nagasawa H. Amino acid sequences of a hyperglycaemic hormone and its related peptides from the kuruma prawn, Penaeus japonicus. Aquaculture. 1995;135:205–212.10.1016/0044-8486(95)01015-7
  • Yang W-J, Aida K, Terauchi A, et al. Amino acid sequence of a peptide with molt-inhibiting activity from the kuruma prawn Penaeus japonicus. Peptides. 1996;17:197–202.10.1016/0196-9781(95)02122-1
  • Yang W-J, Aida K, Nagasawa H. Amino acid sequences and activities of multiple hyperglycemic hormones from the kuruma prawn, Penaeus japonicus. Peptides. 1997;18:479–485.10.1016/S0196-9781(96)00332-4
  • Ohira T, Katayama H, Tominaga S, et al. Cloning and characterization of a molt-inhibiting hormone-like peptide from the prawn Marsupenaeus japonicus. Peptides. 2005;26:259–268.10.1016/j.peptides.2004.09.003
  • Yamano K, Unuma T. Expressed sequence tags from eyestalk of kuruma prawn, Marsupenaeus japonicus. Comp. Biochem. Physiol. A. 2006;143:155–161.10.1016/j.cbpa.2005.11.005
  • Huberman A, Aguilar MB, Brew K, et al. Primary structure of the major isomorph of the crustacean hyperglycemic hormone (CHH-I) from the sinus gland of the Mexican crayfish Procambarus bouvieri (Ortmann): interspecies comparison. Peptides. 1993;14:7–16.10.1016/0196-9781(93)90004-Z
  • Yasuda A, Yasuda Y, Fujita T, et al. Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): multiplicity of molecular forms by stereoinversion and diverse functions. Gen. Comp. Endocrinol. 1994;95:387–398.10.1006/gcen.1994.1138
  • Nagai C, Asazuma H, Nagata S, et al. A convenient method for preparation of biologically active recombinant CHH of the kuruma prawn, Marsupenaeus japonicus, using the bacterial expression system. Peptides. 2009;30:507–517.10.1016/j.peptides.2008.07.017
  • Katayama H, Ohira T, Aida K, et al. Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormone. Peptides. 2002;23:1537–1546.10.1016/S0196-9781(02)00094-3
  • Ohira T, Katayama H, Aida K, et al. Expression of a recombinant crustacean hyperglycemic hormone of the kuruma prawn Penaeus japonicus in methylotrophic yeast Pichia pastoris. Fish. Sci. 2003;69:95–100.10.1046/j.1444-2906.2003.00592.x
  • Mosco A, Edomi P, Guarnaccia C, et al. Functional aspects of cHH C-terminal amidation in crayfish species. Regul. Pept. 2008;147:88–95.10.1016/j.regpep.2008.01.005
  • Ohira T, Tsutsui N, Nagasawa H, et al. Preparation of two recombinant crustacean hyperglycemic hormones from the giant freshwater prawn, Macrobrachium rosenbergii, and their hyperglycemic activities. Zool. Sci. 2006;23:383–391.10.2108/zsj.23.383
  • Katayama H, Chung JS. The specific binding sites of eyestalk- and pericardial organ-crustacean hyperglycaemic hormones (CHHs) in multiple tissues of the blue crab, Callinectes sapidus. J. Exp. Biol. 2009;212:542–549.10.1242/jeb.022889
  • Wang Y-J, Zhao Y, Meredith J, et al. Mutational analysis of the C-terminus in ion transport peptide (ITP) expressed in Drosophila Kc1 cells. Arch. Insect Biochem. Physiol. 2000;45:129–138.10.1002/(ISSN)1520-6327
  • Katayama H, Nagasawa H. Effect of a glycine residue insertion into crustacean hyperglycemic hormone on hormonal activity. Zool. Sci. 2004;21:1121–1124.10.2108/zsj.21.1121
  • Liu C-J, Huang S-S, Toullec J-Y, et al. Functional assessment of residues in the amino- and carboxyl-termini of crustacean hyperglycemic hormone (CHH) in the mud crab Scylla olivacea using point-mutated peptides. PLoS One. 2015;10:e0134983.10.1371/journal.pone.0134983
  • Aguilar MB, Soyez D, Falchetto R, et al. Amino acid sequence of the minor isomorph of the crustacean hyperglycemic hormone (CHH-II) of the Mexican crayfish Procambarus bouvieri (Ortmann): presence of a d-amino acid. Peptides. 1995;16:1375–1383.10.1016/0196-9781(95)02024-1
  • Bulau P, Meisen I, Reichwein-Roderburg B, et al. Two genetic variants of the crustacean hyperglycemic hormone (CHH) from the Australian crayfish, Cherax destructor: detection of chiral isoforms due to posttranslational modification. Peptides. 2003;24:1871–1879.10.1016/j.peptides.2003.10.002
  • Mosco A, Zlatev V, Guarnaccia C, et al. Novel protocol for the chemical synthesis of crustacean hyperglycemic hormone analogues – an efficient experimental tool for studying their functions. PLoS One. 2012;7:e30052.10.1371/journal.pone.0030052
  • Huberman A, Hernández-Arana A, Aguilar MB, et al. Secondary structure of a crustacean neuropeptide hormone family by means of CD. Peptides. 1989;10:1113–1115.10.1016/0196-9781(89)90198-8
  • Katayama H, Ohira T, Nagata K, et al. A recombinant molt-inhibiting hormone of the kuruma prawn has a similar secondary structure to a native hormone: determination of disulfide bond arrangement and measurements of circular dichroism spectra. Biosci. Biotechnol. Biochem. 2001;65:1832–1839.10.1271/bbb.65.1832
  • Inoue H, Tsutsui N, Nagai C, et al. Crystallization and preliminary X-ray analysis of crustacean hyperglycaemic hormone from the kuruma prawn Marsupenaeus japonicus in its weakly active precursor form Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2011;67:1586–1589.10.1107/S1744309111040140
  • Aguilar MB, Falchetto R, Shabanowitz J, et al. Complete primary structure of the molt-inhibiting hormone (MIH) of the Mexican crayfish Procambarus bouvieri (Ortmann). Peptides. 1996;17:367–374.10.1016/0196-9781(96)00010-1
  • Chang ES, Prestwich GD, Bruce MJ. Amino acid sequence of a peptide with both molt-inhibiting and hyperglycemic activities in the lobster, Homarus americanus. Biochem. Biophys. Res. Commun. 1990;171:818–826.10.1016/0006-291X(90)91219-I
  • Chung JS, Webster SG. Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas. From target to transcript. Eur. J. Biochem. 2003;270:3280–3288.10.1046/j.1432-1033.2003.03720.x
  • Nagasawa H, Yang WJ, Shimizu H, et al. Isolation and amino acid sequence of a molt-inhibiting hormone from the American crayfish, Procambarus clarkii. Biosci. Biotechnol. Biochem. 1996;60:554–556.10.1271/bbb.60.554
  • Marco HG, Stoeva S, Voelter W, et al. Characterization and sequence elucidation of a novel peptide with molt-inhibiting activity from the South African spiny lobster, Jasus lalandii. Peptides. 2000;21:1313–1321.10.1016/S0196-9781(00)00273-4
  • Bulau P, Okuno A, Thome E, et al. Characterization of a molt-inhibiting hormone (MIH) of the crayfish, Orconectes limosus, by cDNA cloning and mass spectrometric analysis. Peptides. 2005;26:2129–2136.10.1016/j.peptides.2005.03.005
  • Kawakami T, Toda C, Akaji K, et al. Synthesis of a molt-inhibiting hormone of the American crayfish Procambarus Clarkii, and determination of the location of its disulfide linkages. J. Biochem. 2000;128:455–461.10.1093/oxfordjournals.jbchem.a022774
  • Katayama H, Nagata K, Ohira T, et al. The solution structure of molt-inhibiting hormone from the kuruma prawn Marsupenaeus japonicus. J. Biol. Chem. 2003;278:9620–9623.10.1074/jbc.M212962200
  • Ohira T, Nishimura T, Sonobe H, et al. Expression of a recombinant molt-inhibiting hormone of the kuruma prawn Penaeus japonicus in Escherichia coli. Biosci. Biotechnol. Biochem. 1999;63:1576–1581.10.1271/bbb.63.1576
  • Katayama H, Ohira T, Nagata S, et al. Structure-activity relationship of crustacean molt-inhibiting hormone from the kuruma prawn Marsupenaeus japonicus. Biochemistry. 2004;43:9629–9635.10.1021/bi049433v
  • Soyez D, Van Deijnen JE, Martin M. Isolation and characterization of a vitellogenesis-inhibiting factor from the sinus glands of the lobster Homarus americanus. J. Exp. Biol. 1987;244:479–484.
  • Ollivaux C, Vinh J, Soyez D, et al. Crustacean hyperglycemic and vitellogenesis-inhibiting hormones in the lobster Homarus gammarus. FEBS J. 2006;273:2151–2160.10.1111/ejb.2006.273.issue-10
  • Treerattrakool S, Panyim S, Chan SM, et al. Molecular characterization of gonad-inhibiting hormone of Penaeus monodon and elucidation of its inhibitory role in vitellogenin expression by RNA interference. FEBS J. 2008;275:970–980.10.1111/ejb.2008.275.issue-5
  • Grève P, Sorokine O, Berges T, et al. Isolation and amino acid sequence of a peptide with vitellogenesis inhibiting activity from the terrestrial isopod Armadillidium vulgare (Crustacea). Gen. Comp. Endocrinol. 1999;115:406–414.10.1006/gcen.1999.7330
  • Tiu SH, Chan SM. The use of recombinant protein and RNA interference approaches to study the reproductive functions of a gonad-stimulating hormone from the shrimp Metapenaeus ensis. FEBS J. 2007;274:4385–4395.10.1111/j.1742-4658.2007.05968.x
  • Zmora N, Trant J, Zohar Y, et al. Molt-inhibiting hormone stimulates vitellogenesis at advanced ovarian developmental stages in the female blue crab, Callinectes sapidus 1: an ovarian stage dependent involvement. Saline Sys. 2009;5:7.10.1186/1746-1448-5-7
  • Luo X, Chen T, Zhong M, et al. Differential regulation of hepatopancreatic vitellogenin (VTG) gene expression by two putative molt-inhibiting hormones (MIH1/2) in Pacific white shrimp (Litopenaeus vannamei). Peptides. 2015;68:58–63.10.1016/j.peptides.2014.11.002
  • Avarre JC, Khayat M, Michelis R, et al. Inhibition of de novo synthesis of a jelly layer precursor protein by crustacean hyperglycemic hormone family peptides and posttranscriptional regulation by sinus gland extracts in Penaeus semisulcatus ovaries. Gen. Comp. Endocrinol. 2001;124:257–268.10.1006/gcen.2001.7710
  • Tsutsui N, Katayama H, Ohira T, et al. The effects of crustacean hyperglycemic hormone-family peptides on vitellogenin gene expression in the kuruma prawn, Marsupenaeus japonicus. Gen. Comp. Endocrinol. 2005;144:232–239.10.1016/j.ygcen.2005.06.001
  • Ohira T, Okumura T, Suzuki M, et al. Production and characterization of recombinant vitellogenesis-inhibiting hormone from the American lobster Homarus americanus. Peptides. 2006;27:1251–1258.10.1016/j.peptides.2005.10.019
  • Okuno A, Hasegawa Y, Nishiyama M, et al. Preparation of an active recombinant peptide of crustacean androgenic gland hormone. Peptides. 2002;23:567–572.10.1016/S0196-9781(01)00635-0
  • Muir TW, Sondhi D, Cole PA. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA. 1998;95:6705–6710.10.1073/pnas.95.12.6705
  • Dawson PE, Muir TW, Clark-Lewis I, et al. Synthesis of proteins by native chemical ligation. Science. 1994;266:776–779.10.1126/science.7973629
  • Katayama H, Hojo H, Ohira T, et al. Correct disulfide pairing is required for the biological activity of crustacean androgenic gland hormone (AGH): synthetic studies of AGH. Biochemistry. 2010;49:1798–1807.10.1021/bi902100f
  • Hua QX, Mayer JP, Jia W, et al. The folding nucleus of the insulin superfamily: a flexible peptide model foreshadows the native state. J. Biol. Chem. 2006;281:28131–28142.10.1074/jbc.M602616200
  • Maruyama K, Nagata K, Tanaka M, et al. Synthesis of bombyxin-IV, an insulin superfamily peptide from the silkworm, Bombyx mori, by stepwise and selective formation of three disulfide bridges. J. Protein Chem. 1992;11:1–12.10.1007/BF01025086
  • Rosen O, Manor R, Weil S, et al. A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration. PLoS One. 2010;5:e15281.10.1371/journal.pone.0015281
  • Katayama H, Kubota N, Hojo H, et al. Direct evidence for the function of crustacean insulin-like androgenic gland factor (IAG): total chemical synthesis of IAG. Bioorg. Med. Chem. 2014;22:5783–5789.10.1016/j.bmc.2014.09.031
  • Nagai C, Mabashi-Asazuma H, Nagasawa H, et al. Identification and characterization of receptors for ion transport peptide (ITP) and ITP-like (ITPL) in the silkworm Bombyx mori. J. Biol. Chem. 2014;289:32166–32177.10.1074/jbc.M114.590646
  • Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723.10.1002/(ISSN)1522-2683
  • DeLano WL. The PyMOL molecular graphics system, version 1.7.4. Schrödinger, LLC. http://www.pymol.org.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.