1,467
Views
13
CrossRef citations to date
0
Altmetric
Food & Nutrition Science

Ginger hexane extract suppresses RANKL-induced osteoclast differentiation

, , , , , & show all
Pages 779-785 | Received 28 Sep 2015, Accepted 24 Nov 2015, Published online: 01 Feb 2016

References

  • Ensrud KE, Thompson DE, Cauley JA, et al. Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. J. Am. Geriatr. Soc. 2000;48:241–249.10.1111/jgs.2000.48.issue-3
  • Nguyen ND, Center JR, Eisman JA, et al. Bone loss, weight loss, and weight fluctuation predict mortality risk in elderly men and women. J. Bone Miner. Res. 2007;22:1147–1154.10.1359/jbmr.070412
  • Suzuki T, Yoshida H. Low bone mineral density at femoral neck is a predictor of increased mortality in elderly Japanese women. Osteoporos. Int. 2010;21:717–719.
  • Clarke B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 2008;3(Suppl 3):S131–S139.10.2215/CJN.04151206
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–342.10.1038/nature01658
  • Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 2002;2:389–406.10.1016/S1534-5807(02)00157-0
  • Rogers MJ, Crockett JC, Coxon FP, et al. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49:34–41.10.1016/j.bone.2010.11.008
  • Das S, Crockett JC. Osteoporosis – a current view of pharmacological prevention and treatment. Drug Des. Dev. Ther. 2013;7:435–448.
  • Heaney RP. Calcium intake and disease prevention. Arq. Bras. Endocrinol. Metabol. 2006;50:685–693.10.1590/S0004-27302006000400014
  • Ooms ME, Roos JC, Bezemer PD, et al. Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. J. Clin. Endocrinol. Metab. 1995;80:1052–1058.
  • Palacios C. The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr. 2006;46:621–628.10.1080/10408390500466174
  • Wei P, Liu M, Chen Y, et al. Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac. J. Trop. Med. 2012;5:243–248.10.1016/S1995-7645(12)60033-9
  • Yamaguchi M, Uchiyama S. β-Criptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol. Cell Biochem. 2004;258:137–144.10.1023/B:MCBI.0000012848.50541.19
  • Sugiura M, Nakamura M, Ogawa K, et al. High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal japanese female subjects: prospective cohort study. PLoS One. 2012;7:e52643.10.1371/journal.pone.0052643
  • Yamahara J, Huang QR, Li YH, et al. Gastrointestinal motility enhancing effect of ginger and its active constituents. Chem. Pharm. Bull. (Tokyo). 1990;38:430–431.10.1248/cpb.38.430
  • Yamahara J, Miki K, Chisaka T, et al. Cholagogic effect of ginger and its active constituents. J. Ethnopharmacol. 1985;13:217–225.
  • Al-Nahain A, Jahan R, Rahmatullah M. Zingiber officinale: a potential plant against rheumatoid arthritis. Arthritis [Internet]. 2014 [cited 2014 May];2014. Available from: http://www.hindawi.com/journals/arthritis/
  • Dugasani S, Pichika MR, Nadarajah VD, et al. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 2010;127:515–520.10.1016/j.jep.2009.10.004
  • Schmid R, Schick T, Steffen R, et al. Comparison of seven commonly used agents for prophylaxis of seasickness. J. Travel. Med. 1994;1:203–206.10.1111/j.1708-8305.1994.tb00596.x
  • Srivastava KC, Mustafa T. Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med. Hypotheses. 1992;39:342–348.10.1016/0306-9877(92)90059-L
  • Bhattarai S, Tran VH, Duke CC. The stability of gingerol and shogaol in aqueous solutions. J. Pharm. Sci. 2001;90:1658–1664.10.1002/(ISSN)1520-6017
  • Murakami A, Song M, Katsumata S, et al. Citrus nobiletin suppresses bone loss in ovariectomized ddY mice and collagen-induced arthritis in DBA/1J mice: Possible involvement of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis regulation. BioFactors. 2007;30:179–192.10.1002/biof.v30:3
  • Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–1508.10.1126/science.289.5484.1504
  • Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 2002;3:889–901.10.1016/S1534-5807(02)00369-6
  • Kim JH, Kim K, Jin HM, et al. Negative feedback control of osteoclast formation through ubiquitin-mediated down-regulation of NFATc1. J. Biol. Chem. 2010;285:5224–5231.10.1074/jbc.M109.042812
  • Koga T, Inui M, Inoue K, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 2004;428:758–763.10.1038/nature02444
  • Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol. Rev. 2009;231:241–256.10.1111/imr.2009.231.issue-1
  • Xing L, Xiu Y, Boyce BF. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J. Orthop. 2012;3:212–222.10.5312/wjo.v3.i12.212
  • Sundaram K, Nishimura R, Senn J, et al. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp. Cell Res. 2007;313:168–178.10.1016/j.yexcr.2006.10.001
  • Sung B1, Murakami A, Oyajobi BO, et al. Zerumbone abolishes RANKL-Induced NF- B activation, inhibits osteoclastogenesis, and suppresses human breast cancer-induced bone loss in athymic nude mice. Cancer Res. 2009;69:1477–1484. 10.1158/0008-5472.CAN-08-3249
  • Lee HJ, Jeong HS, Kim DJ, et al. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch. Pharm. Res. 2008;31:342–349.10.1007/s12272-001-1162-0
  • Bharti AC, Takada Y, Aggarwal BB. Curcumin (diferuloylmethane) inhibits receptor activator of NF- B ligand-induced NF- B activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol. 2004;172:5940–5947.10.4049/jimmunol.172.10.5940
  • Peng F, Tao Q, Wu X, et al. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia. 2012;83:568–585.10.1016/j.fitote.2011.12.028
  • Tanaka K, Arita M, Sakurai H, et al. Analysis of Chemical Properties of Edible and Medicinal Ginger by Metabolomics Approach. Biomed Res Int [Internet]. 2015 [cited 2015 Oct];2015. Available from: http://www.hindawi.com/journals/bmri/.
  • Hwa YL, Sun HP, Misoon L, et al. 1-Dehydro-[10]-gingerdione from ginger inhibits IKKβ activity for NF-κB activation and suppresses NF-κB-regulated expression of inflammatory genes. Br. J. Pharmacol. 2012;167:128–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.