1,312
Views
21
CrossRef citations to date
0
Altmetric
Food & Nutrition Science

Production of keto-disaccharides from aldo-disaccharides in subcritical aqueous ethanol

, &
Pages 998-1005 | Received 13 Oct 2015, Accepted 20 Nov 2015, Published online: 20 Jan 2016

References

  • Kunz C, Rudloff S. Biological functions of oligosaccharides in human milk. Acta Paediatr. 1993;82:903–912.10.1111/apa.1993.82.issue-12
  • Yu Y, Shafie ZM. W H. Cellobiose decomposition in hot-compressed water: importance of isomerization reactions. Ind. Eng. Chem. Res. 2013;52:17006–17014.10.1021/ie403140q
  • Martin D, Lichtenthaler FW. Versatile building blocks from disaccharides: glycosylated 5-hydroxymethylfurfurals. Tetrahedron: Asymmetry. 2006;17:756–762.10.1016/j.tetasy.2005.12.010
  • Guazzelli L, Catelani G, D’Andrea F, et al. Stereoselective access to the β-D-N-acetylhexosaminyl-(1→4)-1-deoxy-D-nojirimycin disaccharide series avoiding the glycosylation reaction. Eur. J. Org. Chem. 2014;2014:6527–6537.
  • Schuster-Wolff-Bühring R, Fischer L, Hinrichs J. Production and physiological action of the disaccharide lactulose. Int. Dairy J. 2010;20:731–741.10.1016/j.idairyj.2010.05.004
  • Seki N, Saito H. Lactose as a source for lactulose and other functional lactose derivatives. Int. Dairy J. 2012;22:110–115.10.1016/j.idairyj.2011.09.016
  • Corbett WM, Kenner J. The degradation of carbohydrates by alkali. Part IX. Cellobiose, cellobiulose, cellotetraose, and laminarin. J. Chem. Soc. 1955;1431–1435.10.1039/jr9550001431
  • Corbett WM, Kenner J. 462. The degradation of carbohydrates by alkali. Part II. Lactose. J. Chem. Soc. 1953;2245–2247.10.1039/jr9530002245
  • Corbett WM, Kenner J. The degradation of carbohydrates by alkali. Part V. Lactulose, maltose, and maltulose. J. Chem. Soc. 1954;1789–1791.10.1039/jr9540001789
  • Shukla R, Verykios XE, Mutharasan R. Isomerization and hydrolysis reactions of important disaccharides over inorganic heterogeneous catalysts. Carbohydr. Res. 1985;143:97–106.10.1016/S0008-6215(00)90699-2
  • Gounder R, Davis ME. Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. J. Catal. 2013;308:176–188.10.1016/j.jcat.2013.06.016
  • Shen Q, Yang R, Hua X, et al. Enzymatic synthesis and identification of oligosaccharides obtained by transgalactosylation of lactose in the presence of fructose using β-galactosidase from Kluyveromyces lactis. Food Chem. 2012;135:1547–1554.10.1016/j.foodchem.2012.05.115
  • Gao D-M, Kobayashi T, Adachi S. Promotion or suppression of glucose isomerization in subcritical aqueous straight-and branched-chain alcohols. Biosci. Biotechnol. Biochem. 2015;79:470–474.10.1080/09168451.2014.973366
  • Gao D-M, Kobayashi T, Adachi S.. Production of rare sugars from common sugars in subcritical aqueous ethanol. Food Chem. 2015;175:465–470.10.1016/j.foodchem.2014.11.144
  • Gao D-M, Kobayashi T, Adachi S. Kinetic analysis for the isomerization of glucose, fructose, and mannose in subcritical aqueous ethanol. Biosci. Biotechnol. Biochem. 2015;79:1005–1010.10.1080/09168451.2014.1003129
  • Gao D-M, Kobayashi T, Adachi S. Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture. J. Appl. Glycosci. 2014;61:9–13.10.5458/jag.jag.JAG-2013_006
  • Bazaev AR, Abdulagatov IM, Bazaev EA, et al. PVT measurements for pure ethanol in the near-critical and supercritical regions. Int. J. Thermophys. 2007;28:194–219.10.1007/s10765-007-0158-2
  • Sommer D, Kleinrahm R, Span R, et al. Measurement and correlation of the (p, ρ, T) relation of liquid cyclohexane, toluene, and ethanol in the temperature range from 233.15 K to 473.15 K at pressures up to 30 MPa for use as density reference liquids. J. Chem. Thermodyn. 2011;43:117–132.10.1016/j.jct.2010.08.010
  • Pfeffer PE, Hicks KB. Characterization of keto disaccharides in solution by deuterium-induced, differential isotope-shift 13C-NMR spectroscopy. Carbohydr. Res. 1982;102:11–22.10.1016/S0008-6215(00)88046-5
  • Low NH, Brisbane T, Bigam G, et al. Carbon-13 nuclear magnetic resonance for the qualitative and quantitative analysis of structurally similar disaccharides. J. Agric. Food Chem. 1988;36:953–957.10.1021/jf00083a014
  • Kimura H, Nakahara M, Matubayasi N. Noncatalytic hydrothermal elimination of the terminal D-glucose unit from malto- and cello-oligosaccharides through transformation to D-fructose. J. Phys. Chem. A. 2012;116:10039–10049.10.1021/jp3034165
  • Corbett WM, Kenner J. The degradation of carbohydrates by alkali. Part VIII). Melibiose. J. Chem. Soc. (Resumed) 1954;3281–3283.
  • Haghighat Khajavi S, Kimura Y, Oomori T, et al. Decomposition kinetics of maltose in subcritical water. Biosci. Biotechnol. Biochem. 2004;68:91–95.
  • Vuorinen T. Kinetics of alkaline degradation of maltose in ethanol-water solutions. Carbohydr. Res. 1982;108:213–219.10.1016/S0008-6215(00)81791-7
  • Isbell HS, Frush HL, Wade CWR, et al. Transformations of sugars in alkaline solutions. Carbohydr. Res. 1969;9:163–175.10.1016/S0008-6215(00)82132-1
  • Vuorinen T, Sjöström E. Kinetics of alkali-catalyzed isomerization of D-glucose and D-fructose in ethanol-water solutions. Carbohydr. Res. 1982;108:23–29.10.1016/S0008-6215(00)81886-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.