10,769
Views
132
CrossRef citations to date
0
Altmetric
Award Review

Secondary metabolites in plants: transport and self-tolerance mechanismsFootnote

Pages 1283-1293 | Received 30 Dec 2015, Accepted 30 Jan 2016, Published online: 04 Mar 2016

References

  • Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones, R, Editors. Biochemistry & molecular biology of plants. Rockville, MD: American Society of Plant Physiologists; 2000. p. 1250–1318.
  • Yazaki K. Natural products and metabolites. In: Christou, P, Klee H, Editors. Handbook of plant biotechnology, Vol. 2, Chichester: Wiley; 2004. p. 811–857.
  • Rischer H, Hakkinen ST, Ritala A, et al. Plant cells as pharmaceutical factories. Curr. Pharm. Des. 2013;19:5640–5660.10.2174/1381612811319310017
  • Sirikantaramas S, Yamazaki M, Saito K. Mechanisms of resistance to self-produced toxic secondary metabolites in plants. Phytochem. Rev. 2007;7:467–477.
  • Verrier PJ, Bird D, Burla B, et al. Plant ABC proteins – a unified nomenclature and updated inventory. Trends Plant Sci. 2008;13:151–159.10.1016/j.tplants.2008.02.001
  • Yazaki K, Shitan N, Sugiyama A, et al. Cell and molecular biology of ATP-binding cassette proteins in plants. Int. Rev. Cell Mol. Biol. 2009;276:263–299.10.1016/S1937-6448(09)76006-X
  • Shoji T. ATP-binding cassette and multidrug and toxic compound extrusion transporters in plants: a common theme among diverse detoxification mechanisms. Int. Rev. Cell Mol. Biol. 2014;309:303–346.10.1016/B978-0-12-800255-1.00006-5
  • Nour-Eldin HH, Andersen TG, Burow M, et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature. 2012;488:531–534.10.1038/nature11285
  • Nour-Eldin HH, Halkier BA. The emerging field of transport engineering of plant specialized metabolites. Curr. Opin. Biotechnol. 2013;24:263–270.10.1016/j.copbio.2012.09.006
  • Takanashi K, Shitan N, Yazaki K. The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotech. 2014;31:417–430.10.5511/plantbiotechnology.14.0904a
  • Jelesko JG. An expanding role for purine uptake permease-like transporters in plant secondary metabolism. Front Plant Sci. 2012;3:78.
  • Yazaki K, Sugiyama A, Morita M, et al. Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem. Reviews. 2008;7:513–524.10.1007/s11101-007-9079-8
  • Yazaki K. Transporters of secondary metabolites. Curr. Opin. Plant Biol. 2005;8:301–307.10.1016/j.pbi.2005.03.011
  • Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 2006;580:1183–1191.10.1016/j.febslet.2005.12.009
  • Shitan N, Yazaki K. New insights into the transport mechanisms in plant vacuoles. Int. Rev. Cell Mol. Biol. 2013;305:383–433.10.1016/B978-0-12-407695-2.00009-3
  • Jørgensen ME, Nour-Eldin HH, Halkier BA. Transport of defense compounds from source to sink: lessons learned from glucosinolates. Trends Plant Sci. 2015;20:508–514.10.1016/j.tplants.2015.04.006
  • Zhao J, Dixon RA. The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci. 2010;15:72–80.10.1016/j.tplants.2009.11.006
  • Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci. 2015;20:576–585.10.1016/j.tplants.2015.06.007
  • De Luca V, Salim V, Thamm A, et al. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr. Opin. Plant Biol. 2014;19:35–42.10.1016/j.pbi.2014.03.006
  • Verma P, Mathur AK, Srivastava A, et al. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma. 2012;249:255–268.10.1007/s00709-011-0291-4
  • Yu F, De Luca V. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc. Natl. Acad. Sci. U S A. 2013;110:15830–15835.10.1073/pnas.1307504110
  • Carqueijeiro I, Noronha H, Duarte P, et al. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol. 2013;162:1486–1496.10.1104/pp.113.220558
  • Ikezawa N, Tanaka M, Nagayoshi M, et al. Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J. Biol. Chem. 2003;278:38557–38565.10.1074/jbc.M302470200
  • Sakai K, Shitan N, Sato F, et al. Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J. Exp. Bot. 2002;53:1879–1886.10.1093/jxb/erf052
  • Shitan N, Tanaka M, Terai K, et al. Human MDR1 and MRP1 recognize berberine as their transport substrate. Biosci. Biotechnol. Biochem. 2007;71:242–245.10.1271/bbb.60441
  • Yazaki K, Shitan N, Takamatsu H, et al. A novel Coptis japonica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome. J. Exp. Bot. 2001;52:877–879.
  • Shitan N, Bazin I, Dan K, et al. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc. Natl. Acad. Sci. U S A. 2003;100:751–756.10.1073/pnas.0134257100
  • Shitan N, Dalmas F, Dan K, et al. Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. Phytochemistry. 2013;91:109–116.10.1016/j.phytochem.2012.02.012
  • Shitan N, Kiuchi F, Sato F, et al. Establishment of Rhizobium-mediated transformation of Coptis japonica and molecular analyses of transgenic plants. Plant Biotechnol. 2005;22:113–118.10.5511/plantbiotechnology.22.113
  • Otani M, Shitan N, Sakai K, et al. Characterization of Vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol. 2005;138:1939–1946.10.1104/pp.105.064352
  • Shoji T, Hashimoto T. Smoking out the masters: transcriptional regulators for nicotine biosynthesis in tobacco. Plant Biotech. 2013;30:217–224.10.5511/plantbiotechnology.13.0221a
  • Dewey RE, Xie J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry. 2013;94:10–27.10.1016/j.phytochem.2013.06.002
  • Steppuhn A, Gase K, Krock B, et al. Nicotine’s defensive function in nature. PLoS Biol. 2004;2:E217.10.1371/journal.pbio.0020217
  • Morita M, Shitan N, Sawada K, et al. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl. Acad. Sci. U S A. 2009;106:2447–2452.10.1073/pnas.0812512106
  • Shitan N, Morita M, Yazaki K. Identification of a nicotine transporter in leaf vacuoles of Nicotiana tabacum. Plant Signal Behav. 2009;4:530–532.10.4161/psb.4.6.8588
  • Shitan N, Minami S, Morita M, et al. Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS One. 2014;9:e108789.10.1371/journal.pone.0108789
  • Shitan N, Hayashida M, Yazaki K. Translocation and accumulation of nicotine via distinct spatio-temporal regulation of nicotine transporters in Nicotiana tabacum. Plant Signal Behav. 2015;10:e1035852.
  • Shoji T, Inai K, Yazaki Y, et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 2009;149:708–718.
  • Hildreth SB, Gehman EA, Yang H, et al. Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc. Natl. Acad. Sci. U S A. 2011;108:18179–18184.10.1073/pnas.1108620108
  • Kato K, Shitan N, Shoji T, et al. Tobacco NUP1 transports both tobacco alkaloids and vitamin B6. Phytochemistry. 2015;113:33–40.10.1016/j.phytochem.2014.05.011
  • Kato K, Shoji T, Hashimoto T. Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway. Plant Physiol. 2014;166:2195–2204.10.1104/pp.114.251645
  • Zhao B, Agblevor F, Ritesh. KC, et al. Enhanced production of the alkaloid nicotine in hairy root cultures of Nicotiana tabacum L. Plant Cell, Tissue Organ Culture (PCTOC). 2013;113:121–12910.1007/s11240-012-0256-0
  • Kessler D, Gase K, Baldwin IT. Field experiments with transformed plants reveal the sense of floral scents. Science. 2008;321:1200–1202.10.1126/science.1160072
  • Kessler D, Bhattacharya S, Diezel C, et al. Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in Nicotiana attenuata. Plant J. 2012;71:529–538.10.1111/tpj.2012.71.issue-4
  • Shitan N, Yazaki K. Accumulation and membrane transport of plant alkaloids. Curr. Pharm. Biotechnol. 2007;8:244–252.10.2174/138920107781387429
  • Shitan N, Kato K, Shoji T. Alkaloid transporters in plants. Plant Biotech. 2014;31:453–463.
  • Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222. http://journal.frontiersin.org/article/10.3389/fpls.2012.00222/abstract
  • Petrussa E, Braidot E, Zancani M, et al. Plant flavonoids – biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 2013;14:14950–14973.10.3390/ijms140714950
  • Marrs KA, Alfenito MR, Lloyd AM, et al. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature. 1995;375:397–400.10.1038/375397a0
  • Goodman CD, Casati P, Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell. 2004;16:1812–1826.10.1105/tpc.022574
  • Francisco RM, Regalado A, Ageorges A, et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. Plant Cell. 2013;25:1840–1854.10.1105/tpc.112.102152
  • Mathews H, Clendennen SK, Caldwell CG, et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell. 2003;15:1689–1703.10.1105/tpc.012963
  • Gomez C, Terrier N, Torregrosa L, et al. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol. 2009;150:402–415.10.1104/pp.109.135624
  • Gomez C, Conejero G, Torregrosa L, et al. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J. 2011;67:960–970.10.1111/tpj.2011.67.issue-6
  • Zhao J, Huhman D, Shadle G, et al. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell. 2011;23:1536–1555.10.1105/tpc.110.080804
  • Thompson EP, Davies JM, Glover BJ. Identifying the transporters of different flavonoids in plants. Plant Signal Behav. 2010;5:860–863.10.4161/psb.5.7.11894
  • Thompson EP, Wilkins C, Demidchik V, et al. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J. Exp. Bot. 2009;61:439–451.
  • Kitamura S, Oono Y, Narumi I. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT. Plant Mol Biol. 2016;90:7–18.
  • Zhao J, Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and arabidopsis. Plant Cell. 2009;21:2323–2340.10.1105/tpc.109.067819
  • Debeaujon I, Peeters AJ, Leon-Kloosterziel KM, et al. The TRANSPARENT TESTA12 gene of arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell. 2001;13:853–871.10.1105/tpc.13.4.853
  • Marinova K, Pourcel L, Weder B, et al. The arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 2007;19:2023–2038.10.1105/tpc.106.046029
  • Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, et al. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. Plant Cell Rep. 2014;33:1147–1159.10.1007/s00299-014-1604-9
  • Frank S, Keck M, Sagasser M, et al. Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant. Plant Biol. (Stuttg). 2011;13:42–50.10.1111/plb.2010.13.issue-1
  • Braidot E, Petrussa E, Bertolini A, et al. Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Planta. 2008;228:203–213.10.1007/s00425-008-0730-4
  • Bertolini A, Peresson C, Petrussa E, et al. Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening. J. Exp. Bot. 2009;60:3861–3871.10.1093/jxb/erp225
  • Poustka F, Irani NG, Feller A, et al. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol. 2007;145:1323–1335.10.1104/pp.107.105064
  • Ichino T, Fuji K, Ueda H, et al. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. Plant J. 2014;80:410–423.10.1111/tpj.2014.80.issue-3
  • Chanoca A, Kovinich N, Burkel B, et al. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell. 2015;27:2545–2559.10.1105/tpc.15.00589
  • Sun Y, Li H, Huang JR. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol. Plant. 2012;5:387–400.10.1093/mp/ssr110
  • Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 2012;63:3429–3444.10.1093/jxb/err430
  • Sugiyama A, Yazaki K. Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication. Plant Biotech. 2014;31:431–443.10.5511/plantbiotechnology.14.0917a
  • Sugiyama A, Yamazaki Y, Yamashita K, et al. Developmental and nutritional regulation of isoflavone secretion from soybean roots. Biosci. Biotechnol. Biochem. 2015;80:89–94.
  • Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-rhizobium symbiosis. Plant Physiol. 2007;144:2000–2008.10.1104/pp.107.096727
  • Banasiak J, Biala W, Staszkow A, et al. A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J. Exp. Bot. 2013;64:1005–1015.10.1093/jxb/ers380
  • Fourcroy P, Sisó-Terraza P, Sudre D, et al. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 2014;201:155–167.10.1111/nph.12471
  • Alejandro S, Lee Y, Tohge T, et al. AtABCG29 Is a monolignol transporter involved in lignin biosynthesis. Curr. Biol. 2012;22:1207–1212.10.1016/j.cub.2012.04.064
  • Tsuyama T, Kawai R, Shitan N, et al. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. Plant Physiol. 2013;162:918–926.10.1104/pp.113.214957
  • Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant, Biol. 2006;57:303–333.10.1146/annurev.arplant.57.032905.105228
  • Ellerbrock B, Kim JH, Jander G. Contribution of glucosinolate transport to arabidopsis defense responses. Plant Signal Behav. 2007;2:282–283.10.4161/psb.2.4.4014
  • Andersen TG, Nour-Eldin HH, Fuller VL, et al. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative arabidopsis. Plant Cell. 2013;25:3133–3145.10.1105/tpc.113.110890
  • Andersen TG, Halkier BA. Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots. Plant Signal Behav. 2014;9:e27740.10.4161/psb.27740
  • Madsen SR, Olsen CE, Nour-Eldin HH, et al. Elucidating the role of transport processes in leaf glucosinolate distribution. Plant Physiol. 2014;166:1450–1462.10.1104/pp.114.246249
  • Saito H, Oikawa T, Hamamoto S, et al. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat. Commun. 2015;6:6095. http://www.nature.com/ncomms/2015/150204/ncomms7095/full/ncomms7095.html 10.1038/ncomms7095
  • Ncube B, Van Staden J. Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules. 2015;20:12698–12731.10.3390/molecules200712698
  • Jasinski M, Stukkens Y, Degand H, et al. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell. 2001;13:1095–1107.10.1105/tpc.13.5.1095
  • Stukkens Y, Bultreys A, Grec S, et al. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol. 2005;139:341–352.10.1104/pp.105.062372
  • Bultreys A, Trombik T, Drozak A, et al. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens. Mol. Plant Pathol. 2009;10:651–663.10.1111/mpp.2009.10.issue-5
  • van den Brule S, Muller A, Fleming AJ, et al. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J. 2002;30:649–662.10.1046/j.1365-313X.2002.01321.x
  • Campbell EJ, Schenk PM, Kazan K, et al. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in arabidopsis. Plant Physiol. 2003;133:1272–1284.10.1104/pp.103.024182
  • Kang J, Hwang JU, Lee M, et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. U S A. 2010;107:2355–2360.10.1073/pnas.0909222107
  • Lee M, Lee K, Lee J, et al. AtPDR12 contributes to lead resistance in arabidopsis. Plant Physiol. 2005;138:827–836.10.1104/pp.104.058107
  • Sasabe M, Toyoda K, Shiraishi T, et al. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett. 2002;518:164–168.10.1016/S0014-5793(02)02697-2
  • Schenke D, Sasabe M, Toyoda K, et al. Genomic structure of the NtPDR1 gene, harboring the two miniature inverted-repeat transposable elements, NtToya1 and NtStowaway101. Genes Genet. Syst. 2003;78:409–418.10.1266/ggs.78.409
  • Crouzet J, Roland J, Peeters E, et al. NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Mol. Biol. 2013;82:181–192.10.1007/s11103-013-0053-0
  • Hurlock AK, Roston RL, Wang K, et al. Lipid trafficking in plant cells. Traffic. 2014;15:915–932.10.1111/tra.2014.15.issue-9
  • Bernard A, Joubès J. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog. Lipid Res. 2013;52:110–129.10.1016/j.plipres.2012.10.002
  • Li N, Xu C, Li-Beisson Y, et al. Fatty acid and lipid transport in plant cells. Trends Plant Sci. 2016;21:145–158.
  • Pighin JA, Zheng H, Balakshin LJ, et al. Plant cuticular lipid export requires an ABC transporter. Science. 2004;306:702–704.10.1126/science.1102331
  • McFarlane HE, Shin JJ, Bird DA, et al. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell. 2010;22:3066–3075.10.1105/tpc.110.077974
  • Bird D, Beisson F, Brigham A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J. 2007;52:485–498.10.1111/j.1365-313X.2007.03252.x
  • Luo B, Xue XY, Hu WL, et al. An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol. 2007;48:1790–1802.10.1093/pcp/pcm152
  • Panikashvili D, Savaldi-Goldstein S, Mandel T, et al. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol. 2007;145:1345–1360.10.1104/pp.107.105676
  • Ukitsu H, Kuromori T, Toyooka K, et al. Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene. Plant Cell Physiol. 2007;48:1524–1533.10.1093/pcp/pcm139
  • Buda GJ, Barnes WJ, Fich EA, et al. An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss Physcomitrella patens. Plant Cell. 2013;25:4000–4013.10.1105/tpc.113.117648
  • Mizuno H, Kawahigashi H, Ogata J, et al. Genomic inversion caused by gamma irradiation contributes to downregulation of a WBC11 homolog in bloomless sorghum. Theor. Appl. Genet. 2013;126:1513–1520.10.1007/s00122-013-2069-x
  • Chen G, Komatsuda T, Ma JF, et al. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc. Natl. Acad. Sci. U S A. 2011;108:12354–12359.10.1073/pnas.1108444108
  • Chen G, Komatsuda T, Ma JF, et al. A functional cutin matrix is required for plant protection against water loss. Plant Signal Behav. 2011;6:1297–1299.10.4161/psb.6.9.17507
  • Ma X, Sela H, Jiao G, et al. Population-genetic analysis of HvABCG31 promoter sequence in wild barley (Hordeum vulgare ssp. spontaneum). BMC Evol. Biol. 2012;12:188. http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-12-18810.1186/1471-2148-12-188
  • Yang Z, Zhang T, Lang T, et al. Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. Int. J. Mol. Sci. 2013;14:20478–20491.10.3390/ijms141020478
  • Li L, Li D, Liu S, et al. The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS One. 2013;8:e82333.10.1371/journal.pone.0082333
  • Fabre G, Garroum I, Mazurek S, et al. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis. New Phytol. 2016;209:192–201.10.1111/nph.13608
  • Bessire M, Borel S, Fabre G, et al. A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell. 2011;23:1958–1970.10.1105/tpc.111.083121
  • Panikashvili D, Shi JX, Schreiber L, et al. The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol. 2011;190:113–124.10.1111/nph.2011.190.issue-1
  • Quilichini TD, Grienenberger E, Douglas CJ. The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Phytochemistry. 2015;113:170–182.10.1016/j.phytochem.2014.05.002
  • Quilichini TD, Friedmann MC, Samuels AL, et al. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol. 2010;154:678–690.10.1104/pp.110.161968
  • Xu J, Yang C, Yuan Z, et al. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell. 2010;22:91–107.10.1105/tpc.109.071803
  • Choi H, Jin J-Y, Choi S, et al. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J. 2011;65:181–193.10.1111/tpj.2011.65.issue-2
  • Dou XY, Yang KZ, Zhang Y, et al. WBC27, an adenosine tri-phosphate-binding cassette protein, controls pollen wall formation and patterning in arabidopsis. J. Integr. Plant Biol. 2011;53:74–88.10.1111/jipb.2011.53.issue-1
  • Kuromori T, Ito T, Sugimoto E, et al. Arabidopsis mutant of AtABCG26, an ABC transporter gene, is defective in pollen maturation. J. Plant Physiol. 2011;168:2001–2005.10.1016/j.jplph.2011.05.014
  • Quilichini TD, Samuels AL, Douglas CJ. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis. Plant Cell. 2014;26:4483–4498.10.1105/tpc.114.130484
  • Zhu L, Shi J, Zhao G, et al. Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J. Plant Biol. 2013;56:59–68.10.1007/s12374-013-0902-z
  • Niu BX, He FR, He M, et al. The ATP-binding Cassette Transporter OsABCG15 is required for anther development and pollen fertility in rice. J. Integr. Plant Biol. 2013;55:710–720.10.1111/jipb.v55.8
  • Qin P, Tu B, Wang Y, et al. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol. 2013;54:138–154.10.1093/pcp/pcs162
  • Wu L, Guan Y, Wu Z, et al. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep. 2014;33:1881–1899.10.1007/s00299-014-1666-8
  • Zhao G, Shi J, Liang W, et al. Two ATP Binding Cassette G (ABCG) transporters, OsABCG26 and OsABCG15, collaboratively regulate rice male reproduction. Plant Physiol. 2015;169:2064–2079.
  • Yadav V, Molina I, Ranathunge K, et al. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell. 2014;26:3569–3588.10.1105/tpc.114.129049
  • Choi H, Ohyama K, Kim YY, et al. The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. Plant Cell. 2014;26:310–324.10.1105/tpc.113.118935
  • Le Hir R, Sorin C, Chakraborti D, et al. ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis. Plant J. 2013;76:811–824.10.1111/tpj.12334
  • Franke R, Schreiber L. Suberin–a biopolyester forming apoplastic plant interfaces. Curr. Opin. Plant Biol. 2007;10:252–259.10.1016/j.pbi.2007.04.004
  • Shiono K, Ando M, Nishiuchi S, et al. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J. 2014;80:40–51.10.1111/tpj.2014.80.issue-1
  • Landgraf R, Smolka U, Altmann S, et al. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell. 2014;26:3403–3415.10.1105/tpc.114.124776
  • Panikashvili D, Shi JX, Bocobza S, et al. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol. Plant. 2010;3:563–575.10.1093/mp/ssp103
  • Sirikantaramas S, Yamazaki M, Saito K. How plants avoid the toxicity of self-produced defense bioactive compounds. Nat. Prod. Discourse, Diversity, Des. 2014;69–82.
  • Sirikantaramas S, Taura F, Morimoto S, et al. Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr. Pharm. Biotechnol. 2007;8:237–243.10.2174/138920107781387456
  • Matsuba Y, Sasaki N, Tera M, et al. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell. 2010;22:3374–3389.10.1105/tpc.110.077487
  • Sirikantaramas S, Yamazaki M, Saito K. Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants. Proc. Natl. Acad. Sci. U S A. 2008;105:6782–6786.10.1073/pnas.0801038105
  • Takanashi K, Shitan N, Sugiyama A, et al. Galactinol synthase gene of Coptis japonica is involved in berberine tolerance. Biosci. Biotechnol. Biochem. 2008;72:398–405.10.1271/bbb.70495
  • Shitan N, Kamimoto Y, Minami S, et al. A tolerance gene for prenylated flavonoid encodes a 26S proteasome regulatory subunit in Sophora flavescens. Biosci. Biotechnol. Biochem. 2011;75:982–984.10.1271/bbb.100665
  • Schroeder JI, Delhaize E, Frommer WB, et al. Using membrane transporters to improve crops for sustainable food production. Nature. 2013;497:60–66.10.1038/nature11909
  • Ro DK, Ouellet M, Paradise EM, et al. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol. 2008;8:83. http://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-8-8310.1186/1472-6750-8-83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.