2,871
Views
52
CrossRef citations to date
0
Altmetric
Award Review

Establishment of cell surface engineering and its development

Pages 1243-1253 | Received 29 Oct 2015, Accepted 01 Feb 2016, Published online: 24 Mar 2016

References

  • Anonymous. Arming yeast with cell-surface catalysts. Chem. Eng. News. 1997;75:32.
  • Ueda M, Tanaka A. Genetic immobilization of proteins on the yeast cell surface. Biotechnol. Adv. 2000;18:121–140.10.1016/S0734-9750(00)00031-8
  • Ueda M, Tanaka A. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J. Biosci. Bioeng. 2000;90:125–136.10.1016/S1389-1723(00)80099-7
  • Su GD, Zhang X, Lin Y. Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol. Lett. 2010;32:1131–1136.10.1007/s10529-010-0270-4
  • Chen YP, Hwang IE, Lin CJ, et al. Enhancing the stability of xylanase from Cellulomonas fimi by cell-surface display on Escherichia coli. J. Appl. Microbiol. 2012;112:455–463.10.1111/jam.2012.112.issue-3
  • Aoki W, Yoshino Y, Morisaka H, et al. High-throughput screening of improved protease inhibitors using a yeast cell surface display system and a yeast cell chip. J. Biosci. Bioeng. 2011;111:16–18.10.1016/j.jbiosc.2010.08.006
  • Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 1997;15:553–557.10.1038/nbt0697-553
  • Chen W, Georgiou G. Cell-surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol. Bioeng. 2002;79:496–503.10.1002/(ISSN)1097-0290
  • Fukuda T, Kato M, Kadonosono T, et al. Enhancement of substrate recognition ability by combinatorial mutation of β-glucosidase displayed on the yeast cell surface. Appl. Microbiol. Biotechnol. 2007;76:1027–1033.10.1007/s00253-007-1070-1
  • Yeung YA, Wittrup KD. Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture. Biotechnol. Prog. 2002;18:212–220.10.1021/bp010186l
  • Georgiou G, Poetschke HL, Stathopoulos C, et al. Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol. 1993;11:6–10.10.1016/0167-7799(93)90068-K
  • Kuroda K, Ueda M. Engineering of microorganisms towards recovery of rare metal ions. Appl. Microbiol. Biotechnol. 2010;87:53–60.10.1007/s00253-010-2581-8
  • Kuroda K, Ueda M. Molecular design of the microbial cell surface toward the recovery of metal ions. Curr. Opin. Biotechnol. 2011;22:427–433.10.1016/j.copbio.2010.12.006
  • Kuroda K, Ueda M. Cell surface engineering of yeast for applications in white biotechnology. Biotechnol. Lett. 2011;33:1–9.10.1007/s10529-010-0403-9
  • Samuelson P, Gunneriusson E, Nygren PA, et al. Display of proteins on bacteria. J. Biotechnol. 2002;96:129–154.10.1016/S0168-1656(02)00043-3
  • Ståhl S, Uhlén M. Bacterial surface display: trends and progress. Trends Biotechnol. 1997;15:185–192.10.1016/S0167-7799(97)01034-2
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–1317.10.1126/science.4001944
  • Smith GP. Surface presentation of protein epitopes using bacteriophage expression systems. Curr. Opin. Biotechnol. 1991;2:668–673.10.1016/0958-1669(91)90032-Z
  • Tabuchi S, Ito J, Adachi T, et al. Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module. Appl. Microbiol. Biotechnol. 2010;87:1783–1789.10.1007/s00253-010-2664-6
  • Adachi T, Ito J, Kawata K, et al. Construction of an Aspergillus oryzae cell-surface display system using a putative GPI-anchored protein. Appl. Microbiol. Biotechnol. 2008;81:711–719.10.1007/s00253-008-1687-8
  • Tanino T, Fukuda H, Kondo A. Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system. Biotechnol. Prog. 2006;22:989–993.10.1021/bp060133+
  • Wang Q, Li L, Chen M, et al. Construction of a novel system for cell surface display of heterologous proteins on Pichia pastoris. Biotechnol. Lett. 2007;29:1561–1566.10.1007/s10529-007-9430-6
  • Wang Q, Li L, Chen M, et al. Construction of a novel Pichia pastoris cell-surface display system based on the cell wall protein Pir1. Curr. Microbiol. 2008;56:352–357.10.1007/s00284-007-9089-1
  • Yuzbasheva EY, Yuzbashev TV, Laptev IA, et al. Efficient cell surface display of Lip2 lipase using C-domains of glycosylphosphatidylinositol-anchored cell wall proteins of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2011;91:645–654.10.1007/s00253-011-3265-8
  • Washida M, Takahashi S, Ueda M, et al. Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 2001;56:681–686.10.1007/s002530100718
  • Breinig F, Schmitt MJ. Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2002;58:637–644.
  • Lipke PN, Kurja J. Sexual agglutination in budding yeasts: Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 1992;56:180–194.
  • Kuroda K, Ueda M. Generation of arming yeasts with active proeins and peptides via cell surface display system—Cell surface engineering, bio-arming technology. Methods Mol. Biol. 2014;1152:137–155.10.1007/978-1-4939-0563-8
  • Kuroda K, Matsui K, Higuchi S, et al. Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl. Microbiol. Biotechnol. 2009;82:713–719.10.1007/s00253-008-1808-4
  • Sato N, Matsumoto T, Ueda M, et al. Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl. Microbiol. Biotechnol. 2002;60:469–474.
  • Van der Vaart JM, te Biesebeke R, Chapman JW, et al. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl. Environ. Microbiol. 1997;63:615–620.
  • Wang Z, Mathias A, Stavrou S, et al. A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Protein Eng. Des. Sel. 2005;18:337–343.10.1093/protein/gzi036
  • Wentz AE, Shusta EV. A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl. Environ. Microbiol. 2007;73:1189–1198.10.1128/AEM.02427-06
  • Matsumoto T, Fukuda H, Ueda M, et al. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the flo1p flocculation functional domain. Appl. Environ. Microbiol. 2002;68:4517–4522.10.1128/AEM.68.9.4517-4522.2002
  • Abe H, Ohba M, Shimma Y, et al. Yeast cells harboring human α-1,3-fucosyltransferase at the cell surface engineered using Pir, a cell wall-anchored protein. FEMS Yeast Res. 2004;4:417–425.10.1016/S1567-1356(03)00193-4
  • Hara K, Ono T, Kuroda K, et al. Membrane-displayed peptide ligand activates the pheromone response pathway in Saccharomyces cerevisiae. J. Biochem. 2012;151:551–557.10.1093/jb/mvs027
  • Hara K, Shigemori T, Kuroda K, et al. Membrane-displayed somatostatin activates somatostatin receptor subtype-2 heterologously produced in Saccharomyces cerevisiae. AMB Express. 2012;2:e63.10.1186/2191-0855-2-63
  • Lynd LR, van Zyl WH, Mcbride JE, et al. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 2005;16:577–583.10.1016/j.copbio.2005.08.009
  • Murai T, Ueda M, Yamamura M, et al. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol. 1997;63:1362–1366.
  • Murai T, Ueda M, Shibasaki Y, et al. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl. Microbiol. Biotechnol. 1999;51:65–70.10.1007/s002530051364
  • Shigechi H, Koh J, Fujita Y, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl. Environ. Microbiol. 2004;70:5037–5040.10.1128/AEM.70.8.5037-5040.2004
  • Murai T, Ueda M, Kawaguchi T, et al. Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. Environ. Microbiol. 1998;64:4857–4861.
  • Fujita Y, Ito J, Ueda M, et al. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 2004;70:1207–1212.10.1128/AEM.70.2.1207-1212.2004
  • Kotaka A, Bando H, Kaya M, et al. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J. Biosci. Bioeng. 2008;105:622–627.10.1263/jbb.105.622
  • Ito J, Kosugi A, Tanaka T, et al. Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin g and cellulosomal enzyme binding domains. Appl. Environ. Microbiol. 2009;75:4149–4154.10.1128/AEM.00318-09
  • Yamada R, Taniguchi N, Tanaka T, et al. Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb. Cell Fact. 2010;9:e32.10.1186/1475-2859-9-32
  • Nakanishi A, Bae J, Kuroda K, et al. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering. AMB Express. 2012;2:e56.10.1186/2191-0855-2-56
  • Bae J, Morisaka H, Kuroda K, et al. Cellulosome complexes – natural biocatalysts as arming micro-compartments of enzymes. J. Molecul. Microbiol. Biotechnol. 2013;23:370–378.
  • Tsai SL, Oh J, Singh S, et al. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 2009;75:6087–6093.10.1128/AEM.01538-09
  • Goyal G, Tsai SL, Madan B, et al. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb. Cell Fact. 2011;10:e89.10.1186/1475-2859-10-89
  • Bae J, Kuroda K, Ueda M. Proximity effect between cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl. Environ. Microbiol. 2015;81:59–66.10.1128/AEM.02864-14
  • Matsui K, Bae J, Esaka K, et al. Exoproteome profiles of Clostridium cellulovorans on various carbon sources. Appl. Environ. Microbiol. 2013;79:6576–6584.10.1128/AEM.02137-13
  • Esaka K, Aburaya S, Morisaka H, et al. Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation. AMB Express. 2015;5:2.10.1186/s13568-014-0089-9
  • Aburaya S, Esaka K, Morisaka H, et al. Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express. 2015;5:29.10.1186/s13568-015-0115-6
  • Katahira S, Fujita Y, Mizuike A, et al. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 2004;70:5407–5414.10.1128/AEM.70.9.5407-5414.2004
  • Katahira S, Mizuike A, Fukuda H, et al. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 2006;72:1136–1143.10.1007/s00253-006-0402-x
  • Ota M, Sakuragi H, Morisaka H, et al. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol. Prog. 2013;29:346–351.10.1002/btpr.1700
  • Nakanishi A, Bae JG, Fukai K, et al. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl. Microbiol. Biotechnol. 2012;94:939–948.10.1007/s00253-012-3876-8
  • Takagi T, Morisaka H, Aburaya S, et al. Putative alginate assimilation process of the marine bacterium Saccharophagus degradans 2-40 based on quantitative proteome analysis. Mar. Biotechnol. 2016;18:15–23.
  • Takagi T, Yokoi T, Shibata T, et al. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl. Microbiol. Biotechnol. 2016;100;1723–1732.
  • Shiraga S, Kawakami M, Ishiguro M, et al. Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents. Appl. Environ. Microbiol. 2005;71:4335–4338.10.1128/AEM.71.8.4335-4338.2005
  • Nakamura Y, Matsumoto T, Nomoto F, et al. Enhancement of activity of lipase-displaying yeast cells and their application to optical resolution of (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. Biotechnol. Prog. 2006;22:998–1002.10.1021/bp060136m
  • Kato M, Fuchimoto J, Tanino T, et al. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl. Microbiol. Biotechnol. 2007;75:549–555.10.1007/s00253-006-0835-2
  • Inaba C, Maekawa K, Morisaka H, et al. Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts. Appl. Microbiol. Biotechnol. 2009;83:859–864.10.1007/s00253-009-1931-x
  • Tanino T, Aoki T, Chung WY, et al. Improvement of a Candida antarctica lipase B-displaying yeast whole-cell biocatalyst and its application to the polyester synthesis reaction. Appl. Microbiol. Biotechnol. 2009;82:59–66.10.1007/s00253-008-1764-z
  • Tanino T, Ohno T, Aoki T, et al. Development of yeast cells displaying Candida antarctica lipase B and their application to ester synthesis reaction. Appl. Microbiol. Biotechnol. 2007;75:1319–1325.10.1007/s00253-007-0959-z
  • Han SY, Pan ZY, Huang DF, et al. Highly efficient synthesis of ethyl hexanoate catalyzed by CALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase. J. Mol. Catal. B. 2009;59:168–172.10.1016/j.molcatb.2009.02.007
  • Su GD, Huang DF, Han SY, et al. Display of Candida antarctica lipase B on Pichia pastoris and its application to flavor ester synthesis. Appl. Microbiol. Biotechnol. 2010;86:1493–1501.10.1007/s00253-009-2382-0
  • Jiang Z, Gao B, Ren R, et al. Efficient display of active lipase LipB52 with a Pichia pastoris cell surface display system and comparison with the LipB52 displayed on Saccharomyces cerevisiae cell surface. BMC Biotechnol. 2008;8:e4.10.1186/1472-6750-8-4
  • Jiang ZB, Song HT, Gupta N, et al. Cell surface display of functionally active lipases from Yarrowia lipolytica in Pichia pastoris. Protein Expr. Purif. 2007;56:35–39.10.1016/j.pep.2007.07.003
  • Kaya M, Ito J, Kotaka A, et al. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl. Microbiol. Biotechnol. 2008;79:51–60.10.1007/s00253-008-1393-6
  • Inaba C, Higuchi S, Morisaka H, et al. Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells. Appl. Microbiol. Biotechnol. 2010;86:1895–1902.10.1007/s00253-009-2396-7
  • Fukuda T, Isogawa D, Takagi M, et al. Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis. Biosci. Biotechnol. Biochem. 2007;71:2845–2847.10.1271/bbb.70315
  • Isogawa D, Morisaka H, Kuroda K, et al. Evaluation of chitosan-binding amino acid residues of chitosanase from Paenibacillus fukuinensis. Biosci. Biotechnol. Biochem. 2014;78:1177–1182.10.1080/09168451.2014.917263
  • Kotrba P, Ruml T. Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb2+ by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2010;76:2615–2622.10.1128/AEM.01463-09
  • Kuroda K, Shibasaki S, Ueda M, et al. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl. Microbiol. Biotechnol. 2001;57:697–701.10.1007/s002530100813
  • Kuroda K, Ueda M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl. Microbiol. Biotechnol. 2003;63:182–186.10.1007/s00253-003-1399-z
  • Kuroda K, Ueda M. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl. Microbiol. Biotechnol. 2006;70:458–463.10.1007/s00253-005-0093-8
  • Satomura A, Kuroda K, Ueda M. Environmental stress tolerance engineering by modification of cell surface and transcription factor in Saccharomyces cerevisiae. Cur. Environ. Eng. 2014;1:149–156.
  • Grunden AM, Ray RM, Rosentel JK, et al. Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J. Bacteriol. 1996;178:735–744.
  • Nishitani T, Shimada M, Kuroda K, et al. Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl. Microbiol. Biotechnol. 2010;86:641–648.10.1007/s00253-009-2304-1
  • Kuroda K, Nishitani T, Ueda M. Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl. Microbiol. Biotechnol. 2012;96:153–159.10.1007/s00253-012-4069-1
  • Kuroda K, Ebisutani K, Iida K, et al. Enhanced adsorption and recovery of uranyl ions by NikR mutant-displaying yeast. Biomolecules. 2014;4:390–401.10.3390/biom4020390
  • Yasui M, Shibasaki S, Kuroda K, et al. An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface. Appl. Microbiol. Biotechnol. 2002;59:329–331.
  • Fukuda T, Tsuchiyama K, Makishima H, et al. Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system. Biotechnol. Lett. 2010;32:655–659.10.1007/s10529-010-0204-1
  • Takayama K, Suye S, Kuroda K, et al. Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol. Prog. 2006;22:939–943.10.1021/bp060107b
  • Fukuda T, Tsuchiya K, Makishima H, et al. Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP. Biotechnol. J. 2010;5:515–519.10.1002/biot.200900292
  • Takayama K, Suye S, Tanaka Y, et al. Estimation of enzyme kinetic parameters of cell surface-displayed organophosphorus hydrolase and construction of a biosensing system for organophosphorus compounds. Anal. Sci. 2011;27:823–826.10.2116/analsci.27.823
  • Shibasaki S, Ueda M, Ye K, et al. Creation of cell surface-engineered yeast that display different fluorescent proteins in response to the glucose concentration. Appl. Microbiol. Biotechnol. 2001;57:528–533.
  • Shibasaki S, Ninomiya Y, Ueda M, et al. Intelligent yeast strains with the ability to self-monitor the concentrations of intra- and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface. Appl. Microbiol. Biotechnol. 2001;57:702–707.
  • Shibasaki S, Tanaka A, Ueda M. Development of combinatorial bioengineering using yeast cell surface display—order-made design of cell and protein for bio-monitoring. Biosens. Bioelectron. 2003;19:123–130.10.1016/S0956-5663(03)00169-6
  • Tamaru Y, Ohtsuka M, Kato K, et al. Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol. Prog. 2006;22:949–953.10.1021/bp060130x
  • Shigemori T, Nagayama M, Yamada J, et al. Construction of a convenient system for easily screening inhibitors of mutated influenza virus neuraminidases. FEBSOpenBio. 2013;3:484–489.
  • Yamada J, Miura N, Shigemori T, et al Application of cell surface engineered yeast for the development of drugs against influenza virus infection. In Bishop RH, editor. Influenza viruses: epidemiology, detection and management. New York (NY): Nova Science Publisher; 2014. p. 91–110.
  • Wasilenko JL, Sarmento L, Spatz S, et al. Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using α-agglutinin for production of oral vaccines. Biotechnol. Prog. 2010;26:542–547.
  • Lin Y, Tsumuraya T, Wakabayashi T, et al. Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl. Microbiol. Biotechnol. 2003;62:226–232.10.1007/s00253-003-1283-x
  • Lin Y, Shiraga S, Tsumuraya T, et al. Comparison of two forms of catalytic antibody displayed on yeast-cell surface. J. Mol. Catal. B. 2004;28:241–246.10.1016/j.molcatb.2003.12.021
  • Okochi N, Kato M, Kadonosono T, et al. Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface. Appl. Microbiol. Biotechnol. 2007;77:597–603.10.1007/s00253-007-1197-0
  • Nakamura Y, Shibasaki S, Ueda M, et al. Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Appl. Microbiol. Biotechnol. 2001;57:500–505.
  • Matsui K, Kuroda K, Ueda M. Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl. Microbiol. Biotechnol. 2009;82:105–113.10.1007/s00253-008-1761-2
  • Zou W, Ueda M, Yamanaka H, et al. Construction of a combinatorial protein library displayed on yeast cell surface using DNA random priming method. J. Biosci. Bioeng. 2001;92:393–396.10.1016/S1389-1723(01)80246-2
  • Zou W, Ueda M, Tanaka A. Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl. Microbiol. Biotechnol. 2002;58:806–812.
  • Andreu C, del Olmo M. Yeast arming by the Aga2p system: effect of growth conditions in galactose on the efficiency of the display and influence of expressing leucine-containing peptides. Appl. Microbiol. Biotechnol. 2013;97:9055–9069.10.1007/s00253-013-5086-4
  • Shiraga S, Ishiguro M, Fukami H, et al. Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain. Appl. Microbiol. Biotechnol. 2005;68:779–785.10.1007/s00253-005-1935-0
  • Kadonosono T, Kato M, Ueda M. Alteration of substrate specificity of rat neurolysin from matrix metalloproteinase-2/9-type to -3-type specificity by comprehensive mutation. Protein Eng. Des. Sel. 2008;21:507–513.10.1093/protein/gzn026
  • Fushimi T, Miura N, Shintani H, et al. Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl. Microbiol. Biotechnol. 2013;97:4003–4011.10.1007/s00253-012-4467-4
  • Miura N, Kuroda K, Ueda M. Enzyme evolution by yeast cell surface engineering. Methods Mol. Biol. 2015;217–232.10.1007/978-1-4939-2748-7
  • Fukuda T, Kato M, Suye S, et al. Development of high-throughput screening system by single cell reaction using microchamber array chip. J. Biosci. Bioeng. 2007;104:241–243.10.1263/jbb.104.241
  • van den Beucken T, Pieters H, Steukers M, et al. Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett. 2003;546:288–294.10.1016/S0014-5793(03)00602-1
  • Rajpal A, Beyaz N, Haber L, et al. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc. Natl. Acad. Sci. USA. 2005;102:8466–8471.10.1073/pnas.0503543102
  • Graff CP, Chester K, Begent R, et al. Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37oC. Protein Eng. Des. Sel. 2004;17:293–304.10.1093/protein/gzh038
  • Razai A, Garcia-Rodriguez C, Lou J, et al. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J. Mol. Biol. 2005;351:158–169.10.1016/j.jmb.2005.06.003
  • VanAntwerp JJ, Wittrup KD. Thermodynamic characterization of affinity maturation: the D1.3 antibody and a higher-affinity mutant. J. Mol. Recognit. 1998;11:10–13.10.1002/(ISSN)1099-1352
  • Wang Z, Kim GB, Woo JH, et al. Improvement of a recombinant anti-monkey anti-CD3 diphtheria toxin based immunotoxin by yeast display affinity maturation of the scFv. Bioconjug. Chem. 2007;18:947–955.10.1021/bc0603438
  • Ueda M. Revolutionary protein engineering using molecular display. In: Protein engineering: design, selection, and applications. New York (NY): Nova Science Publisher; 2011. p. 73–80.
  • Kuroda K, Ueda M. Arming technology in yeast—novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules. 2013;3:632–650.10.3390/biom3030632

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.