1,484
Views
9
CrossRef citations to date
0
Altmetric
Award Review

Physiological function and ecological aspects of fatty acid-amino acid conjugates in insectsFootnote

Pages 1274-1282 | Received 30 Nov 2015, Accepted 29 Jan 2016, Published online: 04 Mar 2016

References

  • Stowe MK, Turlings TCJ, Loughrin JH, et al. The chemistry of eavesdropping, alarm, and deceit. Proc. Natl. Acad. Sci. USA. 1995;92:23–28.10.1073/pnas.92.1.23
  • Hansson BS, Stensmyr MC. Evolution of insect olfaction. Neuron. 2011;72:698–711.10.1016/j.neuron.2011.11.003
  • Mumm R, Dicke M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 2010;88:628–667.10.1139/Z10-032
  • Mattiacci L, Dicke M, Posthumus MA. β-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA. 1995;92:2036–2040.10.1073/pnas.92.6.2036
  • Dicke M, Van Beek TA, Posthumus MA, et al. Isolation and identification of volatile kairomone that affects acarine predatorprey interactions involvement of host plant in its production. J. Chem. Ecol. 1990;16:381–396.10.1007/BF01021772
  • Boland W, Feng Z, Donath J, et al. Are acyclic C11 and C16 homoterpenes plant volatiles indicating herbivory? Naturwissenschaften. 1992;79:368–371.10.1007/BF01140183
  • Pare PW, Tumlinson JH. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 1997;114:1161–1167.
  • Alborn HT, Turlings TCJ, Jones TH, et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science. 1997;276:945–949.10.1126/science.276.5314.945
  • Spiteller D, Pohnert G, Boland W. Absolute configuration of volicitin, an elicitor of plant volatile biosynthesis from lepidopteran larvae. Tetrahedron Lett. 2001;42:1483–1485.10.1016/S0040-4039(00)02290-5
  • Pare PW, Alborn HT, Tumlinson JH. Concerted biosynthesis of an insect elicitor of plant volatiles. Proc. Natl. Acad. Sci. USA. 1998;95:13971–13975.10.1073/pnas.95.23.13971
  • Alborn HT, Jones TH, Stenhagen GS, et al. Identification and synthesis of volicitin and related components from beet armyworm oral secretion. J. Chem. Ecol. 2000;26:203–220.10.1023/A:1005401814122
  • Roda A, Halitschke R, Steppuhn A, et al. Individual variability in herbivore-specific elicitors from the plant’s perspective. Mol. Ecol. 2004;13:2421–2433.10.1111/j.1365-294X.2004.02260.x
  • Kaur H, Heinzel N, Schottner M, et al. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol. 2010;152:1731–1747.10.1104/pp.109.151738
  • Dinh ST, Baldwin IT, Galis I. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. Plant Physiol. 2013;162:2106–2124.10.1104/pp.113.221150
  • Huffaker A, Pearce G, Veyrat N, et al. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc. Natl. Acad. Sci. USA. 2013;110:5707–5712.10.1073/pnas.1214668110
  • Schmelz EA. Impacts of insect oral secretions on defoliation-induced plant defense. Curr. Opin. Insect Sci. 2015;9:7–15.10.1016/j.cois.2015.04.002
  • Bonaventure G. Perception of insect feeding by plants. Plant Biol. 2012;14:872–880.10.1111/plb.2012.14.issue-6
  • Seidl-Adams I, Richter A, Boomer KB, et al. Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. Plant Cell Environ. 2015;38:23–34.10.1111/pce.2015.38.issue-1
  • Junker RR, Tholl D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 2013;39:810–825.10.1007/s10886-013-0325-9
  • Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007;3:408–414.10.1038/nchembio.2007.5
  • Huffaker A, Kaplan F, Vaughan MM, et al. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol. 2011;156:2082–2097.10.1104/pp.111.179457
  • Huang M, Sanchez-Moreiras AM, Abel C, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012;193:997–1008.10.1111/j.1469-8137.2011.04001.x
  • Bonaventure G, VanDoorn A, Baldwin IT. Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci. 2011;16:294–299.10.1016/j.tplants.2011.01.006
  • Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35:345–351.10.1016/j.it.2014.05.004
  • Mithofer A, Boland W. Recognition of herbivory-associated molecular patterns. Plant Physiol. 2008;146:825–831.10.1104/pp.107.113118
  • Maffei ME, Mithöfer A, Boland W. Before gene expression: early events in plant-insect interaction. Trends Plant Sci. 2007;12:310–316.10.1016/j.tplants.2007.06.001
  • Kanchiswamy CN, Takahashi H, Quadro S, et al. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol. 2010;10:97.10.1186/1471-2229-10-97
  • Wu J, Hettenhausen C, Meldau S, Baldwin IT. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell. 2007;19:1096–1122.10.1105/tpc.106.049353
  • Schmelz EA, Engelberth J, Alborn HT, et al. Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc. Natl. Acad. Sci. USA. 2009;106:653–657.10.1073/pnas.0811861106
  • Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell. 2008;20:1984–2000.10.1105/tpc.108.058594
  • Truitt CL, Wei HX, Paré PW. A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell. 2004;16:523–532.10.1105/tpc.017723
  • Maffei M, Bossi S, Spiteller D, et al. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol. 2004;134:1752–1762.10.1104/pp.103.034165
  • Maischak H, Grigoriev PA, Vogel H, et al. Oral secretions from herbivorous lepidopteran larvae exhibit ion channel-forming activities. FEBS Lett. 2007;581:898–904.10.1016/j.febslet.2007.01.067
  • Wu J, Wang L, Wünsche H, et al. Narboh D, a respiratory burst oxidase homolog in Nicotiana attenuata, is required for late defense responses after herbivore attack. J. Integr. Plant Biol. 2013;55:187–198.10.1111/jipb.2013.55.issue-2
  • Kallenbach M, Alagna F, Baldwin IT, et al. Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. Plant Physiol. 2010;152:96–106.10.1104/pp.109.149013
  • von Dahl CC, Winz RA, Halitschke R, et al. Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J. 2007;51:293–307.10.1111/j.1365-313X.2007.03142.x
  • Wu J, Baldwin IT. Herbivory-induced signalling in plants: perception and action. Plant Cell Environ. 2009;32:1161–1174.10.1111/pce.2009.32.issue-9
  • Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends Plant Sci. 2013;18:30–40.10.1016/j.tplants.2012.08.008
  • Bonaventure G, Baldwin IT. Transduction of wound and herbivory signals in plastids. Commun. Integr. Biol. 2010;3:313–317.10.4161/cib.3.4.11834
  • Alborn HT, Hansen TV, Jones TH, et al. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc. Natl. Acad. Sci. USA. 2007;104:12976–12981.10.1073/pnas.0705947104
  • Schmelz EA, Carroll MJ, LeClere S, et al. Fragments of ATP synthase mediate plant perception of insect attack. Proc. Natl. Acad. Sci. USA. 2006;103:8894–8899.10.1073/pnas.0602328103
  • Schmelz EA, LeClere S, Carroll MJ, et al. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol. 2007;144:793–805.10.1104/pp.107.097154
  • Pohnert G, Jung V, Haukioja E, et al. New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron. 1999;55:11275–11280.10.1016/S0040-4020(99)00639-0
  • Mori N, Alborn HT, Teal PEA, et al. Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. J. Insect Physiol. 2001;47:749–757.10.1016/S0022-1910(00)00171-2
  • Mori N, Yoshinaga N, Sawada Y, et al. Identification of volicitin-related compounds from the regurgitant of lepidopteran caterpillars. Biosci. Biotechnol. Biochem. 2003;67:1168–1171.10.1271/bbb.67.1168
  • De Moraes CM, Mescher MC. Biochemical crypsis in the avoidance of natural enemies by an insect herbivore. Proc. Natl. Acad. Sci. USA. 2004;101:8993–8997.10.1073/pnas.0403248101
  • Alborn HT, Brennan MM, Tumlinson JH. Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm (Manduca sexta) larvae. J. Chem. Ecol. 2003;29:1357–1372.10.1023/A:1024209302628
  • Halitschke R, Schittko U, Pohnert G, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol. 2001;125:711–717.10.1104/pp.125.2.711
  • Aboshi T, Yoshinaga N, Noge K, et al. Efficient incorporation of unsaturated fatty acids into volicitin-related compounds in Spodoptera litura (Lepidoptera: Noctuidae). Biosci. Biotechnol. Biochem. 2007;71:607–610.10.1271/bbb.60546
  • Yoshinaga N, Alborn HT, Nakanishi T, et al. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars. J. Chem. Ecol. 2010;36:319–325.10.1007/s10886-010-9764-8
  • Spiteller D, Dettner K, Boland W. Gut bacteria may be involved in interactions between plants, herbivores and their predators: microbial biosynthesis of N-acylglutamine surfactants as elicitors of plant volatiles. Biol. Chem. 2000;381:755–762.
  • Spiteller D, Boland W. N-(17-Acyloxy-acyl)-glutamines: novel surfactants from oral secretions of lepidopteran larvae. J. Org. Chem. 2003;68:8743–8749.10.1021/jo0342525
  • Yoshinaga N, Sawada Y, Nishida R, et al. Specific incorporation of L-glutamine into volicitin in the regurgitant of Spodoptera litura. Biosci. Biotechnol. Biochem. 2003;67:2655–2657.10.1271/bbb.67.2655
  • Yoshinaga N, Morigaki N, Matsuda F, et al. In vitro biosynthesis of volicitin in Spodoptera litura. Insect Biochem. Mol. Biol. 2005;35:175–184.10.1016/j.ibmb.2004.11.002
  • Yoshinaga N, Aboshi T, Abe H, et al. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc. Natl. Acad. Sci. USA. 2008;105:18058–18063.10.1073/pnas.0809623105
  • Lait CG, Alborn HT, Teal PE, et al. Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proc. Natl. Acad. Sci. USA. 2003;100:7027–7032.10.1073/pnas.1232474100
  • Tumlinson JH, Lait CG. Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Arch. Insect Biochem. Physiol. 2005;58:54–68.10.1002/(ISSN)1520-6327
  • Kuhns EH, Seidl-Adams I, Tumlinson JH. A lepidopteran aminoacylase (L-ACY-1) in Heliothis virescens (Lepidoptera: Noctuidae) gut lumen hydrolyzes fatty acid-amino acid conjugates, elicitors of plant defense. Insect Biochem. Mol. Biol. 2012;42:32–40.10.1016/j.ibmb.2011.10.004
  • Kuhns EH, Seidl-Adams I, Tumlinson JH. Heliothine caterpillars differ in abundance of a gut lumen aminoacylase (L-ACY-1)-suggesting a relationship between host preference and fatty acid amino acid conjugate metabolism. J. Insect Physiol. 2012;58:408–412.10.1016/j.jinsphys.2012.01.003
  • Ishikawa C, Yoshinaga N, Aboshi T, et al. Efficient incorporation of free oxygen into volicitin in Spodoptera litura common cutworm larvae. Biosci. Biotechnol. Biochem. 2009;73:1883–1885.10.1271/bbb.90207
  • Yoshinaga N, Aboshi T, Ishikawa C, et al. Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taiwanemma and fruit fly Drosophila melanogaster larvae. J. Chem. Ecol. 2007;33:1376–1381.10.1007/s10886-007-9321-2
  • Yoshinaga N, Abe H, Morita S, et al. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance? Front. Physiol. 2014;5:121.
  • Heil M. Damaged-self recognition in plant herbivore defence. Trends Plant Sci. 2009;14:356–363.10.1016/j.tplants.2009.04.002
  • Doares SH, Syrovets T, Weiler EW, et al. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA. 1995;92:4095–4098.10.1073/pnas.92.10.4095
  • Bergey DR, Orozco-Cardenas M, de Moura DS, et al. A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acad. Sci. USA. 1999;96:1756–1760.10.1073/pnas.96.4.1756
  • Creelman RA, Mullet JE. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell. 1997;9:1211–1223.10.1105/tpc.9.7.1211
  • Brady SF, Clardy J. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J. Am. Chem. Soc. 2000;122:12903–12904.10.1021/ja002990u
  • Peypoux F, Laprévote O, Pagadoy M, et al. N-acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity. Amino Acids. 2004;26:209–214.
  • Ping L, Büchler R, Mithöfer A, et al. A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids. Environ. Microbiol. 2007;9:1572–1583.10.1111/emi.2007.9.issue-6
  • Funke M, Büchler R, Mahobia V, et al. Rapid hydrolysis of quorum-sensing molecules in the gut of lepidopteran larvae. ChemBioChem. 2008;9:1953–1959.10.1002/cbic.v9:12
  • Sawada Y, Yoshinaga N, Fujisaki K, et al. Absolute configuration of volicitin from the regurgitant of lepidopteran caterpillars and biological activity of volicitin-related compounds. Biosci. Biotechnol. Biochem. 2006;70:2185–2190.10.1271/bbb.60133
  • Yoshinaga N, Ishikawa C, Seidl-Adams I, et al. N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants. J. Chem. Ecol. 2014;40:484–490.10.1007/s10886-014-0436-y
  • Gouinguené S, Degen T, Turlings TCJ. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology. 2001;11:9–16.10.1007/PL00001832
  • Degen T, Dillmann C, Marion-Poll F, et al. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol. 2004;135:1928–1938.10.1104/pp.104.039891
  • Maag D, Erb M, Bernal JS, et al. Maize domestication and anti-herbivore defences: leaf-specific dynamics during early ontogeny of maize and its wild ancestors. PLoS One. 2015;10:e0135722.10.1371/journal.pone.0135722
  • Heil M, Ibarra-Laclette E, Adame-Álvarez RM, et al. How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS One. 2012;7:e30537.10.1371/journal.pone.0030537
  • Felton GW, Tumlinson JH. Plant-insect dialogs: complex interactions at the plant-insect interface. Curr. Opin. Plant Biol. 2008;11:457–463.10.1016/j.pbi.2008.07.001
  • Delphia CM, Mescher MC, Felton GW, et al. The role of insect-derived cues in eliciting indirect plant defenses in tobacco, Nicotiana tabacum. Plant Signal Behav. 2006;1:243–250.10.4161/psb.1.5.3279

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.