2,104
Views
14
CrossRef citations to date
0
Altmetric
Regular Papers

Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans

, , , , &
Pages 1768-1775 | Received 19 Dec 2015, Accepted 18 Feb 2016, Published online: 11 Mar 2016

References

  • Masuo S, Terabayashi Y, Shimizu M, et al. Takaya N Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia. Mol. Genet. Genomics. 2010;284:15–24.
  • Shimizu M, Fujii T, Masuo S, et al. Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics. 2009;9:7–19.10.1002/pmic.v9:1
  • Terabayashi Y, Shimizu M, Kitazume T, et al. Conserved and specific responses to hypoxia in Aspergillus oryzae and Aspergillus nidulans determined by comparative transcriptomics. Appl. Microbiol. Biotechnol. 2012;93:305–317.10.1007/s00253-011-3767-4
  • Vödisch M, Scherlach K, Winkler R, et al. Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J. Proteome Res. 2011;10:2508–2524.10.1021/pr1012812
  • Takasaki K, Shoun H, Yamaguchi M, et al. Fungal ammonia fermentation-A novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. J. Biol. Chem. 2004;279:12414–12420.10.1074/jbc.M313761200
  • Shimizu M, Fujii T, Masuo S, et al. Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl. Environ. Microbiol. 2010;76:1507–1515.10.1128/AEM.02135-09
  • Friedrich W. Vitamins. Berlin: Walter de Gruyter; 1988.10.1515/9783110859188
  • Butterworth RF. Thiamin deficiency and brain disorders. Nutr. Res. Rev. 2003;16:277–283.10.1079/NRR200367
  • Jordan F. Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Nat. Prod. Rep. 2003;20:184–201.10.1039/b111348h
  • Settembre E, Begley TP, Ealick SE. Structural biology of enzymes of the thiamin biosynthesis pathway. Curr. Opin. Struct. Biol. 2003;13:739–747.10.1016/j.sbi.2003.10.006
  • Begley TP, Downs DM, Ealick SE, et al. Thiamin biosynthesis in prokaryotes. Arch. Microbiol. 1999;171:293–300.10.1007/s002030050713
  • Spenser ID, White RL. Biosynthesis of vitamin B1 (thiamin): an instance of biochemical diversity. Angew. Chem. Int. Ed. Engl. 1997;36:1032–1046.10.1002/(ISSN)1521-3773
  • Godoi PHC, Galhardo RS, Luche DD, et al. Structure of the thiazole biosynthetic enzyme THI1 from Arabidopsis thaliana. J. Biol. Chem. 2006;281:30957–30966.10.1074/jbc.M604469200
  • Chatterjee A, Jurgenson CT, Schroeder FC, et al. Thiamin biosynthesis in eukaryotes: characterization of the enzyme-bound product of thiazole synthase from Saccharomyces cerevisiae and its implications in thiazole biosynthesis. J. Am. Chem. Soc. 2006;128:7158–7159.10.1021/ja061413o
  • Chatterjee A, Jurgenson CT, Schroeder FC, et al. Biosynthesis of thiamin thiazole in eukaryotes: Conversion of NAD to an advanced intermediate. J. Am. Chem. Soc. 2007;129:2914–2922.10.1021/ja067606t
  • Chatterjee A, Abeydeera ND, Bale S, et al. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature. 2011;478:542–546.10.1038/nature10503
  • Nosaka K. Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2006;72:30–40.10.1007/s00253-006-0464-9
  • Li M, Petteys BJ, McClure JM, et al. Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol. Cell Biol. 2010;30:3329–3341.10.1128/MCB.01590-09
  • Miranda-Ríos J. The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. Structure. 2007;15:259–265.10.1016/j.str.2007.02.001
  • Cressina E, Chen L, Moulin M, et al. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Biochem. Soc. Trans. 2011;39:652–657.10.1042/BST0390652
  • Cheah MT, Wachter A, Sudarsan N, et al. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature. 2007;447:497–500.10.1038/nature05769
  • Kubodera T, Watanabe M, Yoshiuchi K, et al. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett. 2003;555:516–520.10.1016/S0014-5793(03)01335-8
  • Shimizu M, Masuo S, Fujita T, et al. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Mol. Cell. Biol. 2012;32:3743–3755.10.1128/MCB.00032-12
  • Sambrook J, Fritch EF, Maniatis T. In molecular cloning: a laboratory manual. vol. 2. Cold spring harbor, NY: Cold Spring harbor laboratory press; 1989.
  • Shimizu M, Takaya N. Nudix hydrolase controls nucleotides and glycolytic mechanisms in hypoxic Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2013;77:1888–1893.10.1271/bbb.130334
  • Sato I, Shimizu M, Hoshino T, et al. The glutathione system of Aspergillus nidulans involves a fungus-specific glutathione S-transferase. J. Biol. Chem. 2009;284:8042–8053.10.1074/jbc.M807771200
  • Romagnoli G, Luttik MA, Kotter P, et al. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-Acid decarboxylases in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012;78:7538–7548.10.1128/AEM.01675-12
  • de Vries RP, Flitter SJ, van de Vondervoort PJ, et al. Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans. Mol. Microbiol. 2003;49:131–141.10.1046/j.1365-2958.2003.03554.x
  • Thon M, Al-Abdallah Q, Hortschansky P, et al. The thioredoxin system of the filamentous fungus Aspergillus nidulans: impact on development and oxidative stress response. J. Biol. Chem. 2007;282:27259–27269.10.1074/jbc.M704298200
  • Machado CR, Praekelt UM, de Oliveira RC, et al. Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. J. Mol. Biol. 1997;273:114–121.10.1006/jmbi.1997.1302
  • Hua Q, Yang C, Shimizu K. Metabolic flux analysis for efficient pyruvate fermentation using vitamin-auxotrophic yeast of Torulopsis glabrata. J. Biosci. Bioeng. 1999;87:206–213.10.1016/S1389-1723(99)89014-8
  • Xu G, Hua Q, Duan N, et al. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Yeast. 2012;29:209–217.10.1002/yea.v29.6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.