3,434
Views
57
CrossRef citations to date
0
Altmetric
Reviews

Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era

, , &
Pages 1667-1680 | Received 11 Dec 2015, Accepted 18 Feb 2016, Published online: 23 Mar 2016

References

  • Wyatt TT, Wösten HA, Dijksterhuis J. Fungal spores for dispersion in space and time. Adv. Appl. Microbiol. 2013;85:43–91.10.1016/B978-0-12-407672-3.00002-2
  • Adams TH, Yu JH. Coordinate control of secondary metabolite production and asexual sporulation in Aspergillus nidulans. Curr. Opin. Microbiol. 1998;1:674–677.10.1016/S1369-5274(98)80114-8
  • Etxebeste O, Garzia A, Espeso EA, et al. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol. 2010;18:569–576.10.1016/j.tim.2010.09.007
  • Fischer R, Kües U. Asexual sporulation in mycelial fungi. In: Kües U, Fischer R, editors. The mycota: growth, differentiation and sexuality. Vol. 1. Berlin: Springer; 2006. p. 263–292.
  • Galagan JE, Calvo SE, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105–1115.10.1038/nature04341
  • Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438:1157–1161.10.1038/nature04300
  • Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438:1151–1156.10.1038/nature04332
  • Pel HJ, de Winde JH, Archer DB, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007;25:221–231.10.1038/nbt1282
  • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 2002;66:300–372.10.1128/MMBR.66.2.300-372.2002
  • Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 2007;1773:1311–1340.10.1016/j.bbamcr.2007.05.003
  • Elion EA. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 2000;3:573–581.10.1016/S1369-5274(00)00143-0
  • Fitzgibbon GJ, Morozov IY, Jones MG, et al. Genetic analysis of the TOR pathway in Aspergillus nidulans. Eukaryotic Cell. 2005;4:1595–1598.10.1128/EC.4.9.1595-1598.2005
  • Conrad M, Schothorst J, Kankipati HN, et al. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2014;38:254–299.10.1111/1574-6976.12065
  • Taj G, Agarwal P, Grant M, et al. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal. Behav. 2010;5:1370–1378.10.4161/psb.5.11.13020
  • Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 1999;19:2435–2444.10.1128/MCB.19.4.2435
  • Reiser V, Ruis H, Ammerer G. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 1999;10:1147–1161.10.1091/mbc.10.4.1147
  • Krisak L, Strich R, Winters RS, et al. SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev. 1994;8:2151–2161.10.1101/gad.8.18.2151
  • Jun SC, Lee SJ, Park HJ, et al. The MpkB MAP kinase plays a role in post-karyogamy processes as well as in hyphal anastomosis during sexual development in Aspergillus nidulans. J. Microbiol. 2011;49:418–430.10.1007/s12275-011-0193-3
  • Kang JY, Chun J, Jun SC, et al. The MpkB MAP kinase plays a role in autolysis and conidiation of Aspergillus nidulans. Fungal Genet. Biol. 2013;61:42–49.10.1016/j.fgb.2013.09.010
  • Atoui A, Bao D, Kaur N, et al. Aspergillus nidulans natural product biosynthesis is regulated by MpkB, a putative pheromone response mitogen-activated protein kinase. Appl. Environ. Microbiol. 2008;74:3596–3600.10.1128/AEM.02842-07
  • Yoshimi A, Fujioka T, Mizutani O, et al. Mitogen-activated protein kinases MpkA and MpkB independently affect micafungin sensitivity in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2015;79:836–844.10.1080/09168451.2014.998619
  • Wei H, Requena N, Fischer R. The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol. Microbiol. 2003;47:1577–1588.10.1046/j.1365-2958.2003.03405.x
  • Bayram Ö, Bayram ÖS, Ahmed YL, et al. The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet. 2012;8:e1002816.10.1371/journal.pgen.1002816
  • Jung US, Levin DE. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 1999;34:1049–1057.10.1046/j.1365-2958.1999.01667.x
  • Bussink HJ, Osmani SA. A mitogen-activated protein kinase (MPKA) is involved in polarized growth in the filamentous fungus, Aspergillus nidulans. FEMS Microbiol. Lett. 1999;173:117–125.10.1111/fml.1999.173.issue-1
  • Fujioka T, Mizutani O, Furukawa K, et al. MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryotic Cell. 2007;6:1497–1510.10.1128/EC.00281-06
  • Furukawa K, Hoshi Y, Maeda T. et al. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 2005;56:1246–1261.10.1111/j.1365-2958.2005.04605.x
  • Bahn YS. Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryotic Cell. 2008;7:2017–2036.10.1128/EC.00323-08
  • Rispail N, Soanes DM, Ant C, et al. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 2009;46:287–298.10.1016/j.fgb.2009.01.002
  • Hamel LP, Nicole MC, Duplessis S, et al. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell. 2012;24:1327–1351.10.1105/tpc.112.096156
  • Kawasaki L, Sanchez O, Shiozaki K. et al. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 2002;45:1153–1163.10.1046/j.1365-2958.2002.03087.x
  • Lara-Rojas F, Sánchez O, Kawasaki L. et al. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol. Microbiol. 2011;80:436–454.10.1111/mmi.2011.80.issue-2
  • Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, et al. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One. 2013;8:e80881.10.1371/journal.pone.0080881
  • Xue T, Nguyen CK, Romans A. et al. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryotic Cell. 2004;3:557–560.10.1128/EC.3.2.557-560.2004
  • de Castro PA, Chen C, de Almeida RS, et al. ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol. Microbiol. 2014;94:655–674.10.1111/mmi.2014.94.issue-3
  • Reyes G, Romans A, Nguyen CK, et al. Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyalcohol sugars. Eukaryotic Cell. 2006;5:1934–1940.10.1128/EC.00178-06
  • Hagiwara D, Suzuki S, Kamei K, et al. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genet. Biol. 2014;73:138–149.10.1016/j.fgb.2014.10.011
  • Hoch JA, Silhavy TJ. Two-component signal transduction. Washington DC: ASM Press; 1995.
  • Mizuno T. His-Asp phosphotransfer signal transduction. J. Biochem. 1998;123:555–563.10.1093/oxfordjournals.jbchem.a021972
  • Shor E, Chauhan N. A case for two-component signaling systems as antifungal drug targets. PLoS Pathog. 2015;11:e1004632.10.1371/journal.ppat.1004632
  • Defosse TA, Sharma A, Mondal AK, et al. Hybrid histidine kinases in pathogenic fungi. Mol. Microbiol. 2015;95:914–924.10.1111/mmi.12911
  • Nakamichi N, Yamada H, Aoyama K, et al. His-to-Asp phosphorelay circuitry for regulation of sexual development in Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 2002;66:2663–2672.10.1271/bbb.66.2663
  • Nakamichi N, Yanada H, Aiba H, et al. Characterization of the Prr1 response regulator with special reference to sexual development in Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 2003;67:547–555.10.1271/bbb.67.547
  • Morigasaki S, Shiozaki K. Two-component signaling to the stress MAP kinase cascade in fission yeast. Methods Enzymol. 2010;471:279–289.10.1016/S0076-6879(10)71015-6
  • Kobayashi T, Abe K, Asai K, et al. Genomics of Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2007;71:646–670.10.1271/bbb.60550
  • Hagiwara D, Asano Y, Marui J, et al. The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2007;71:1003–1014.10.1271/bbb.60665
  • Vargas-Pérez I, Sánchez O, Kawasaki L. et al. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. Eukaryotic Cell. 2007;6:1570–1583.10.1128/EC.00085-07
  • Krems B, Charizanis C, Entian KD. The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr. Genet. 1996;29:327–334.10.1007/BF02208613
  • Ohmiya R, Kato C, Yamada H, et al. A fission yeast gene (prr1(+)) that encodes a response regulator implicated in oxidative stress response. J. Biochem. 1999;125:1061–1066.10.1093/oxfordjournals.jbchem.a022387
  • Lee J, Godon C, Lagniel G, et al. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 1999;274:16040–16046.10.1074/jbc.274.23.16040
  • Kuge S, Arita M, Murayama A, et al. Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell Biol. 2001;21:6139–6150.10.1128/MCB.21.18.6139-6150.2001
  • Lamarre C, Ibrahim-Granet O, Du C, et al. Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genet. Biol. 2007;44:682–690.10.1016/j.fgb.2007.01.009
  • Nakamura H, Kikuma T, Jin FJ, et al. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae. J. Biosci. Bioeng. 2016. doi: 10.1016/j.jbiosc.2015.08.011. Epub ahead of print.
  • Lavín JL, García-Yoldi A, Ramírez L, et al. Two-component signal transduction in Agaricus bisporus: a comparative genomic analysis with other basidiomycetes through the web-based tool BASID2CS. Fungal Genet. Biol. 2013;55:77–84.10.1016/j.fgb.2012.09.012
  • Furukawa K, Katsuno Y, Urao T, et al. Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl. Environ. Microbiol. 2002;68:5304–5310.10.1128/AEM.68.11.5304-5310.2002
  • Ji Y, Yang F, Ma D, et al. HOG-MAPK signaling regulates the adaptive responses of Aspergillus fumigatus to thermal stress and other related stress. Mycopathologia. 2012;174:273–282.10.1007/s11046-012-9557-4
  • Virginia M, Appleyard CL, McPheat WL, et al. A novel ‘two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr. Genet. 2000;37:364–372.
  • Tüncher A, Reinke H, Martic G, et al. A basic-region helix-loop-helix protein-encoding gene (devR) involved in the development of Aspergillus nidulans. Mol. Microbiol. 2004;52:227–241.10.1111/j.1365-2958.2003.03961.x
  • Aoyama K, Aiba H, Mizuno T. Genetic analysis of the His-to-Asp phosphorelay implicated in mitotic cell cycle control: involvement of histidine-kinase genes of Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 2001;65:2347–2352.10.1271/bbb.65.2347
  • Hayashi S, Yoshioka M, Matsui T, et al. Control of reactive oxygen species (ROS) production through histidine kinases in Aspergillus nidulans under different growth conditions. FEBS Open Bio. 2014;4:90–95.10.1016/j.fob.2014.01.003
  • Meena N, Kaur H, Mondal AK. Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J. Biol. Chem. 2010;285:12121–12132.10.1074/jbc.M109.075721
  • El-Mowafy M, Bahgat MM, Bilitewski U. Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants. BMC Microbiol. 2013;13:209.10.1186/1471-2180-13-209
  • Hagiwara D, Mizuno T, Abe K. Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2009;73:1566–1571.10.1271/bbb.90063
  • Motoyama T, Ohira T, Kadokura K. et al. An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr. Genet. 2005;47:298–306.10.1007/s00294-005-0572-6
  • Dongo A, Bataillé-Simoneau N, Campion C, et al. The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Appl. Environ. Microbiol. 2009;75:127–134.10.1128/AEM.00993-08
  • Hagiwara D, Matsubayashi Y, Marui J, et al. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Biosci. Biotechnol. Biochem. 2007;71:844–847.10.1271/bbb.70051
  • Izumitsu K, Yoshimi A, Tanaka C. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus. Eukaryotic Cell. 2007;6:171–181.10.1128/EC.00326-06
  • Rispail N, Di Pietro A. The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum. Mol. Plant Pathol. 2010;11:395–407.10.1111/mpp.2010.11.issue-3
  • Viaud M, Fillinger S, Liu W, et al. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol. Plant Microbe Interact. 2006;19:1042–1050.10.1094/MPMI-19-1042
  • Brandt S, von Stetten D, Gunther M, et al. The fungal phytochrome FphA from Aspergillus nidulans. J. Biol. Chem. 2008;283:34605–34614.10.1074/jbc.M805506200
  • Blumenstein A, Vienken K, Tasler R, et al. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 2005;15:1833–1838.10.1016/j.cub.2005.08.061
  • Purschwitz J, Müller S, Kastner C, et al. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol. 2008;18:255–259.10.1016/j.cub.2008.01.061
  • Suzuki A, Kanamaru K, Azuma N, et al. GFP-tagged expression analysis revealed that some histidine kinases of Aspergillus nidulans show temporally and spatially different expression during the life cycle. Biosci. Biotechnol. Biochem. 2008;72:428–434.10.1271/bbb.70543
  • Hagiwara D, Asano Y, Marui J, et al. Transcriptional profiling for Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genet. Biol. 2009;46:868–878.10.1016/j.fgb.2009.07.003
  • Losada L, Barker BM, Pakala S, et al. Large-scale transcriptional response to hypoxia in Aspergillus fumigatus observed using RNAseq identifies a novel hypoxia regulated ncRNA. Mycopathologia. 2014;178:331–339.10.1007/s11046-014-9779-8
  • Posas F, Wurgler-Murphy SM, Maeda T, et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 “two-component” osmosensor. Cell. 1996;86:865–875.10.1016/S0092-8674(00)80162-2
  • Aoyama K, Mitsubayashi Y, Aiba H, et al. Spy1, a histidine-containing phosphotransfer signaling protein, regulates the fission yeast cell cycle through the Mcs4 response regulator. J. Bacteriol. 2000;182:4868–4874.10.1128/JB.182.17.4868-4874.2000
  • Nguyen AN, Lee A, Place W, et al. Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell. 2000;11:1169–1181.10.1091/mbc.11.4.1169
  • Mavrianos J, Desai C, Chauhan N. Two-component histidine phosphotransfer protein ypd1 is not essential for viability in Candida albicans. Eukaryotic Cell. 2014;13:452–460.10.1128/EC.00243-13
  • Banno S, Noguchi R, Yamashita K, et al. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr. Genet. 2007;51:197–208.10.1007/s00294-006-0116-8
  • Jacob S, Foster AJ, Yemelin A, et al. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Fungal Biol. 2015;119:580–594.10.1016/j.funbio.2015.03.003
  • Wong Sak Hoi J, Dumas B. Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity. Eukaryotic Cell. 2010;9:480–485.
  • Vallim MA, Miller KY, Miller BL. Aspergillus SteA (Sterile12-like) is a homeodomain-C2/H2-Zn+2 finger transcription factor required for sexual reproduction. Mol. Microbiol. 2000;36:290–301.10.1046/j.1365-2958.2000.01874.x
  • Morita H, Hatamoto O, Masuda T, et al. Function analysis of steA homolog in Aspergillus oryzae. Fungal Genet. Biol. 2007;44:330–338.10.1016/j.fgb.2006.10.009
  • Proft M, Serrano R. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol. Cell. Biol. 1999;19:537–546.10.1128/MCB.19.1.537
  • Rep M, Reiser V, Gartner U, et al. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 1999;19:5474–5485.10.1128/MCB.19.8.5474
  • Proft M, Struhl K. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol. Cell. 2002;9:1307–1317.10.1016/S1097-2765(02)00557-9
  • Rep M, Krantz M, Thevelein JM, et al. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 2000;275:8290–8300.10.1074/jbc.275.12.8290
  • Shiozaki K, Russell P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 1996;10:2276–2288.10.1101/gad.10.18.2276
  • Wilkinson MG, Samuels M, Takeda T, et al. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 1996;10:2289–2301.10.1101/gad.10.18.2289
  • Hagiwara D, Asano Y, Yamashino T, et al. Characterization of bZip-type transcription factor AtfA with reference to stress responses of conidia of Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2008;72:2756–2760.10.1271/bbb.80001
  • Damveld RA, Arentshorst M, Franken A, et al. The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Mol. Microbiol. 2005;58:305–319.10.1111/j.1365-2958.2005.04827.x
  • Ji H, Lu X, Wang C, et al. Identification of a novel HOG1 homologue from an industrial glycerol producer Candida glycerinogenes. Curr. Microbiol. 2014;69:909–914.10.1007/s00284-014-0670-0
  • Zajc J, Kogej T, Galinski EA, et al. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microbiol. 2014;80:247–256.10.1128/AEM.02702-13
  • Kayingo G, Wong B. The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiology. 2005;151:2987–2999.10.1099/mic.0.28040-0
  • Miskei M, Karányi Z, Pócsi I. Annotation of stress-response proteins in the aspergilli. Fungal Genet. Biol. 2008;46 (Suppl 1):S105–S120.
  • Fillinger S, Ruijter G, Tamás MJ, et al. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 2001;39:145–157.10.1046/j.1365-2958.2001.02223.x
  • Furukawa K, Yoshimi A, Furukawa T, et al. Novel reporter gene expression systems for monitoring activation of the Aspergillus nidulans HOG pathway. Biosci. Biotechnol. Biochem. 2007;71:1724–1730.10.1271/bbb.70131
  • Witteveen CFB, Visser J. Polyol pools in Aspergillus niger. FEMS Microbiol. Lett. 1995;134:57–62.10.1111/fml.1995.134.issue-1
  • Beever RE, Laracy EP. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J. Bacteriol. 1986;168:1358–1365.
  • Redkar RJ, Locy RD, Singh NK. Biosynthetic pathways of glycerol accumulation under salt stress in Aspergillus nidulans. Exp. Mycol. 1995;19:241–246.10.1006/emyc.1995.1030
  • Kelavkar UP, Chhatpar HS. Polyol concentrations in Aspergillus repens grown under salt stress. World J. Microbiol. Biotechnol. 1993;9:579–582.10.1007/BF00386298
  • Mellon JE, Dowd MK, Cotty PJ. Time course study of substrate utilization by Aspergillus flavus in medium simulating corn (Zea mays) kernels. J. Agric. Food Chem. 2002;50:648–652.10.1021/jf011048e
  • Ross SJ, Findlay VJ, Malakasi P, et al. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell. 2000;11:2631–2642.10.1091/mbc.11.8.2631
  • Moye-Rowley WS. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryotic Cell. 2003;2:381–389.10.1128/EC.2.3.381-389.2003
  • Ikner A, Shiozaki K. Yeast signaling pathways in the oxidative stress response. Mutat. Res. 2005;569:13–27.10.1016/j.mrfmmm.2004.09.006
  • Asano Y, Hagiwara D, Yamashino T, et al. Characterization of the bZip-type transcription factor NapA with reference to oxidative stress response in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2007;71:1800–1803.10.1271/bbb.70133
  • Lessing F, Kniemeyer O, Wozniok I, et al. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryotic Cell. 2007;6:2290–2302.10.1128/EC.00267-07
  • Hon T, Dodd A, Dirmeier R, et al. A mechanism of oxygen sensing in yeast: Multiple oxygen-responsive steps in the heme biosynthetic pathway affect hap1 activity. J. Biol. Chem. 2003;278:50771–50780.10.1074/jbc.M303677200
  • Davies BS, Rine J. A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics. 2006;174:191–201.10.1534/genetics.106.059964
  • Masuo S, Terabayashi Y, Shimizu M, et al. Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia. Mol. Genet. Genomics. 2010;284:415–424.10.1007/s00438-010-0576-x
  • Vödisch M, Scherlach K, Winkler R, et al. Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin a biosynthesis gene cluster in response to hypoxia. J. Proteome Res. 2011;10:2508–2524.10.1021/pr1012812
  • Willger SD, Puttikamonkul S, Kim KH, et al. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog. 2008;4:e1000200.10.1371/journal.ppat.1000200
  • Chung D, Barker BM, Carey CC, et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog. 2014;10:e1004487.10.1371/journal.ppat.1004487
  • Grahl N, Shepardson KM, Chung D, et al. Hypoxia and fungal pathogenesis: to air or not to air? Eukaryotic Cell. 2012;11:560–570.10.1128/EC.00031-12
  • Chun CD, Liu OW, Madhani HD. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog. 2007;3:e22.10.1371/journal.ppat.0030022
  • Kroll K, Pähtz V, Hillmann F, et al. Identification of hypoxia-inducible target genes of Aspergillus fumigatus by transcriptome analysis reveals cellular respiration as an important contributor to hypoxic survival. Eukaryotic Cell. 2014;13:1241–1253.10.1128/EC.00084-14
  • Kozakiewicsz Z, Smith D. Physiology of Aspergillus. In: Smith JE, editor. Biotechnology handbooks – 7: Aspergillus. New York, NY: Plenum Press; 1994. p. 23–40.
  • Burnie JP, Carter TL, Hodgetts SJ, et al. Fungal heat-shock proteins in human disease. FEMS Microbiol. Rev. 2006;30:53–88.10.1111/j.1574-6976.2005.00001.x
  • Li ZW, Li X, Yu QY, et al. The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evol. Biol. 2009;9:215.10.1186/1471-2148-9-215
  • Freitas JS, Silva EM, Leal J, et al. Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress Chaperones. 2011;16:565–572.10.1007/s12192-011-0267-5
  • Lamoth F, Juvvadi PR, Fortwendel JR, et al. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryotic Cell. 2012;11:1324–1332.10.1128/EC.00032-12
  • Wu J, Wang M, Zhou L, et al. Small heat shock proteins, phylogeny in filamentous fungi and expression analyses in Aspergillus nidulans. Gene. 2016;575:675–679.10.1016/j.gene.2015.09.044
  • Al-Bader N, Vanier G, Liu H, et al. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect. Immun. 2010;78:3007–3018.10.1128/IAI.00813-09
  • Fillinger S, Chaveroche MK, van Dijck P, et al. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology. 2001;147:1851–1862.10.1099/00221287-147-7-1851
  • An MZ, Tang YQ, Mitsumasu K, et al. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol. Lett. 2011;33:1367–1374.10.1007/s10529-011-0576-x
  • Albrecht D, Guthke R, Brakhage AA, et al. Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics. 2010;11:32.10.1186/1471-2164-11-32
  • Do JH, Yamaguchi R, Miyano S. Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model. BMC Genomics. 2009;10:306.10.1186/1471-2164-10-306
  • Futagami T, Mori K, Wada S, et al. Transcriptomic analysis of temperature responses of Aspergillus kawachii during barley koji production. Appl. Environ. Microbiol. 2015;81:1353–1363.10.1128/AEM.03483-14
  • Aimanianda V, Bayry J, Bozza S, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460:1117–1121.10.1038/nature08264
  • Grünbacher A, Throm T, Seidel C, et al. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. PLoS One. 2014;9:e94546.10.1371/journal.pone.0094546
  • Braga GU, Rangel DE, Fernandes ÉK, et al. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr. Genet. 2015;61:405–425.10.1007/s00294-015-0483-0
  • Chiang YM, Meyer KM, Praseuth M, et al. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal Genet. Biol. 2011;48:430–437.10.1016/j.fgb.2010.12.001
  • Esbelin J, Mallea S, Ram AF, et al. Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation. Photochem. Photobiol. 2013;89:758–761.10.1111/php.2013.89.issue-3
  • Heinekamp T, Thywißen A, Macheleidt J, et al. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front. Microbiol. 2013;3:440.
  • Thywißen A, Heinekamp T, Dahse HM, et al. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front. Microbiol. 2011;2:96.
  • Volling K, Thywissen A, Brakhage AA, et al. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell. Microbiol. 2011;13:1130–1148.10.1111/cmi.2011.13.issue-8
  • Hillmann F, Novohradská S, Mattern DJ, et al. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ. Microbiol. 2015;17:2858–2869.10.1111/1462-2920.12808
  • Navarro RE, Stringer MA, Hansberg W. et al. catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Curr. Genet. 1996;29:352–359.
  • Paris S, Wysong D, Debeaupuis JP, et al. Catalases of Aspergillus fumigatus. Infect. Immun. 2003;71:3551–3562.10.1128/IAI.71.6.3551-3562.2003
  • Hisada H, Hata Y, Kawato A, et al. Cloning and expression analysis of two catalase genes from Aspergillus oryzae. J. Biosci. Bioeng. 2005;99:562–568.10.1263/jbb.99.562
  • Sakamoto K, Iwashita K, Yamada O, et al. Aspergillus oryzae atfA controls conidial germination and stress tolerance. Fungal Genet. Biol. 2009;46:887–897.10.1016/j.fgb.2009.09.004
  • Sakamoto K, Arima TH, Iwashita K, et al. Aspergillus oryzae atfB encodes a transcription factor required for stress tolerance in conidia. Fungal Genet. Biol. 2008;45:922–932.10.1016/j.fgb.2008.03.009
  • Ruijter GJ, Bax M, Patel H, et al. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic Cell. 2003;2:690–698.10.1128/EC.2.4.690-698.2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.