5,361
Views
18
CrossRef citations to date
0
Altmetric
Award Review

Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylasesFootnote

Pages 1294-1305 | Received 18 Feb 2016, Accepted 08 Mar 2016, Published online: 31 Mar 2016

References

  • Gibson GR, Beatty ER, Wang X, et al. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995;108:975–982.10.1016/0016-5085(95)90192-2
  • Tanaka R, Takayama H, Morotomi M, et al. Effects of administration of TOS and Bifidobacterium breve 4006 on the Human Fecal Flora. Bifidobact. Microflora. 1983;2:17–24.10.12938/bifidus1982.2.1_17
  • Bouhnik Y, Attar A, Joly FA, et al. Lactulose ingestion increases faecal bifidobacterial counts: a randomised double-blind study in healthy humans. Eur. J. Clin. Nutr. 2004;58:462–466.10.1038/sj.ejcn.1601829
  • Kaneko T, Kohmoto T, Kikuchi H, et al. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci. Biotechnol. Biochem. 1994;58:2288–2290.10.1271/bbb.58.2288
  • Murosaki S, Muroyama K, Yamamoto Y, et al. Immunopotentiating activity of nigerooligosaccharides for the T helper 1-like immune response in mice. Biosci. Biotechnol. Biochem. 1999;63:373–378.10.1271/bbb.63.373
  • Kovacs-Nolan J, Kanatani H, Nakamura A, et al. β-1,4-Mannobiose stimulates innate immune responses and induces TLR4-dependent activation of mouse macrophages but reduces severity of inflammation during endotoxemia in mice. J. Nutr. 2013;143:384–391.10.3945/jn.112.167866
  • Yamanaka K. Purification, crystallization and properties of the d-xylose isomerase from Lactobacillus brevis. Biochim. Biophys. Acta. 1968;151:670–680.10.1016/0005-2744(68)90015-6
  • Shamanna DK, Sanderson KE. Uptake and catabolism of d-xylose in Salmonella typhimurium LT2. J. Bacteriol. 1979;139:64–70.
  • Bhosale SH, Rao MB, Deshpande VV. Molecular and industrial aspects of glucose isomerase. Microbiol. Rev. 1996;60:280–300.
  • Kuyper M, Winkler AA, van Dijken JP, et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 2004;4:655–664.10.1016/j.femsyr.2004.01.003
  • Itoh H, Okaya H, Khan AR, et al. Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci. Biotechnol. Biochem. 1994;58:2168–2171.10.1271/bbb.58.2168
  • Kim HJ, Hyun EK, Kim YS, et al. Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Appl. Environ. Microbiol. 2006;72:981–985.10.1128/AEM.72.2.981-985.2006
  • Takeshita K, Suga A, Takada G, et al. Mass production of d-psicose from d-fructose by a continuous bioreactor system using immobilized d-tagatose 3-epimerase. J. Biosci. Bioeng. 2000;90:453–455.10.1016/S1389-1723(01)80018-9
  • Iida T, Hayashi N, Yamada T, et al. Failure of d-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans. Metabolism. 2010;59:206–214.10.1016/j.metabol.2009.07.018
  • Matsuo T, Izumori K. d-Psicose inhibits intestinal α-glucosidase and suppresses the glycemic response after ingestion of carbohydrates in rats. J. Clin. Biochem. Nutr. 2009;45:202–206.10.3164/jcbn.09-36
  • Ochiai M, Nakanishi Y, Yamada T, et al. Inhibition by dietary d-psicose of body fat accumulation in adult rats fed a high-sucrose diet. Biosci. Biotechnol. Biochem. 2013;77:1123–1126.10.1271/bbb.130019
  • Ochiai M, Onishi K, Yamada T, et al. d-Psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet. Int. J. Food Sci. Nutr. 2014;65:245–250.10.3109/09637486.2013.845653
  • Tyler TR, Leatherwood JM. Epimerization of disaccharides by enzyme preparations from Ruminococcus albus. Arch. Biochem. Biophys. 1967;119:363–367.10.1016/0003-9861(67)90466-3
  • Ito S, Hamada S, Yamaguchi K, et al. Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus. Biochem. Biophys. Res. Commun. 2007;360:640–645.10.1016/j.bbrc.2007.06.091
  • Ito S, Taguchi H, Hamada S, et al. Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl. Microbiol. Biotechnol. 2008;79:433–441.10.1007/s00253-008-1449-7
  • Jaito N, Saburi W, Muto H, et al. Colorimetric quantification of β-(1→4)-mannobiose and 4-O-β-d-mannosyl-d-glucose. J. Appl. Glycosci. 2014;61:117–119.10.5458/jag.jag.JAG-2014_007
  • Saburi W, Yamamoto T, Taguchi H, et al. Practical preparation of epilactose produced with cellobiose 2-epimerase from Ruminococcus albus NE1. Biosci. Biotechnol. Biochem. 2010;74:1736–1737.10.1271/bbb.100353
  • Ojima T, Saburi W, Sato H, et al. Biochemical characterization of a thermophilic cellobiose 2-epimerase from a thermohalophilic bacterium, Rhodothermus marinus JCM9785. Biosci. Biotechnol. Biochem. 2011;75:2162–2168.10.1271/bbb.110456
  • Senoura T, Taguchi H, Ito S, et al. Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343. Biosci. Biotechnol. Biochem. 2009;73:400–406.10.1271/bbb.80691
  • Park CS, Kim JE, Choi JG, et al. Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl. Microbiol. Biotechnol. 2011;92:1187–1196.10.1007/s00253-011-3403-3
  • Krewinkel M, Kaiser J, Merz M, et al. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose. J. Dairy Sci. 2015;98:3665–3678.10.3168/jds.2015-9411
  • Saburi W, Tanaka Y, Muto H, et al. Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-d-mannosyl-d-glucose phosphorylase-like protein, UnkA. Biosci. Biotechnol. Biochem. 2015;79:969–977.10.1080/09168451.2015.1012146
  • Kim JE, Kim YS, Kang LW, et al. Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes β-1,4- and α-1,4-gluco-oligosaccharides. Biotechnol. Lett. 2012;34:2061–2068.10.1007/s10529-012-0999-z
  • Ojima T, Saburi W, Yamamoto T, et al. Identification and characterization of cellobiose 2-epimerase from various aerobes. Biosci. Biotechnol. Biochem. 2013;77:189–193.10.1271/bbb.120742
  • Taguchi H, Senoura T, Hamada S, et al. Cloning and sequencing of the gene for cellobiose 2-epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS Microbiol. Lett. 2008;287:34–40.10.1111/fml.2008.287.issue-1
  • Park CS, Kim JE, Lee SH, et al. Characterization of a recombinant mannobiose 2-epimerase from Spirochaeta thermophila that is suggested to be a cellobiose 2-epimerase. Biotechnol. Lett. 2013;35:1873–1880.10.1007/s10529-013-1267-6
  • Wasaki J, Taguchi H, Senoura T, et al. Identification and distribution of cellobiose 2-epimerase genes by a PCR-based metagenomic approach. Appl. Microbiol. Biotechnol. 2015;99:4287–4295.10.1007/s00253-014-6265-7
  • Senoura T, Ito S, Taguchi H, et al. New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem. Biophys Res. Commun. 2011;408:701–706.10.1016/j.bbrc.2011.04.095
  • Kim YS, Oh DK. Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 2012;104:668–672.10.1016/j.biortech.2011.11.016
  • Centeno MS, Guerreiro CI, Dias FM, et al. Galactomannan hydrolysis and mannose metabolism in Cellvibrio mixtus. FEMS Microbiol. Lett. 2006;261:123–132.10.1111/fml.2006.261.issue-1
  • Amein M, Leatherwood JM. Mechanism of cellobiose epimerase. Biochem. Biophys. Res. Commun. 1969;36:223–227.10.1016/0006-291X(69)90318-0
  • Fujiwara T, Saburi W, Inoue S, et al. Crystal structure of Ruminococcus albus cellobiose 2-epimerase: structural insights into epimerization of unmodified sugar. FEBS Lett. 2013;587:840–846.10.1016/j.febslet.2013.02.007
  • Fujiwara T, Saburi W, Matsui H, et al. Structural insights into the epimerization of β-1,4-linked oligosaccharides catalyzed by cellobiose 2-epimerase, the sole enzyme epimerizing non-anomeric hydroxyl groups of unmodified sugars. J. Biol. Chem. 2014;289:3405–3415.10.1074/jbc.M113.531251
  • Itoh T, Mikami B, Maru I, et al. Crystal structure of N-acyl-d-glucosamine 2-epimerase from porcine kidney at 2.0 Å resolution. J. Mol. Biol. 2000;303:733–744.10.1006/jmbi.2000.4188
  • Lee YC, Wu HM, Chang YN, et al. The central cavity from the (α/α)6 barrel structure of Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase contains two key histidine residues for reversible conversion. J. Mol. Biol. 2007;367:895–908.10.1016/j.jmb.2006.11.001
  • Itoh T, Mikami B, Hashimoto W, et al. Crystal structure of YihS in complex with d-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase. J. Mol. Biol. 2008;377:1443–1459.10.1016/j.jmb.2008.01.090
  • Ito S, Hamada S, Ito H, et al. Site-directed mutagenesis of possible catalytic residues of cellobiose 2-epimerase from Ruminococcus albus. Biotechnol. Lett. 2009;31:1065–1071.10.1007/s10529-009-9979-3
  • Kawaguchi K, Senoura T, Ito S, et al. The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis. Arch. Microbiol. 2014;196:17–23.10.1007/s00203-013-0938-y
  • Jaito N, Saburi W, Odaka R, et al. Characterization of a thermophilic 4-O-β-d-mannosyl-d-glucose phosphorylase from Rhodothermus marinus. Biosci. Biotechnol. Biochem. 2014;78:263–270.10.1080/09168451.2014.882760
  • Kawahara R, Saburi W, Odaka R, et al. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. J. Biol. Chem. 2012;287:42389–42399.10.1074/jbc.M112.390336
  • Dias FM, Vincent F, Pell G, et al. Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J. Biol. Chem. 2004;279:25517–25526.10.1074/jbc.M401647200
  • Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.10.1093/nar/gkt1178
  • Nihira T, Suzuki E, Kitaoka M, et al. Discovery of β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase involved in the metabolism of N-glycans. J. Biol. Chem. 2013;288:27366–27374.10.1074/jbc.M113.469080
  • Ladevèze S, Tarquis L, Cecchini DA, et al. Role of glycoside phosphorylases in mannose foraging by human gut bacteria. J. Biol. Chem. 2013;288:32370–32383.10.1074/jbc.M113.483628
  • Chiku K, Nihira T, Suzuki E, et al. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from thermoanaerobacter sp. X-514. PLoS One. 2014;9:e114882.10.1371/journal.pone.0114882
  • Cuskin F, Baslé A, Ladevèze S, et al. The GH130 family of mannoside phosphorylases contains glycoside hydrolases that target β-1,2-mannosidic linkages in Candida mannan. J. Biol. Chem. 2015;290:25023–25033.10.1074/jbc.M115.681460
  • Nihira T, Chiku K, Suzuki E, et al. An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans. FEBS Lett. 2015;589:3604–3610.10.1016/j.febslet.2015.10.008
  • Cuskin F, Lowe EC, Temple MJ, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–169.10.1038/nature13995
  • Nakae S, Ito S, Higa M, et al. Structure of novel enzyme in mannan biodegradation process 4-O-β-d-mannosyl-d-glucose phosphorylase MGP. J. Mol. Biol. 2013;425:4468–4478.10.1016/j.jmb.2013.08.002
  • Egloff MP, Uppenberg J, Haalck L, et al. Crystal structure of maltose phosphorylase from Lactobacillus brevis: unexpected evolutionary relationship with glucoamylase. Structure. 2001;9:689–697.10.1016/S0969-2126(01)00626-8
  • Hidaka M, Honda Y, Kitaoka M, et al. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (α/α)6 barrel fold. Structure. 2004;12:937–947.10.1016/j.str.2004.03.027
  • Hidaka M, Nishimoto M, Kitaoka M, et al. The crystal structure of galacto-N-biose/lacto-N-biose I phosphorylase: a large deformation of a TIM barrel scaffold. J. Biol. Chem. 2009;284:7273–7283.10.1074/jbc.M808525200
  • Ladevèze S, Cioci G, Roblin P, et al. Structural bases for N-glycan processing by mannoside phosphorylase. Acta Crystallogr. D Biol. Crystallogr. 2015;71:1335–1346.10.1107/S1399004715006604
  • Ye X, Saburi W, Odaka R, et al. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies. FEBS Lett. Forthcoming.
  • Martinez-Castro I, Olano A. Influence of thermal processing on carbohydrate composition of milk. Formation of epilactose. Milchwissenschaft. 1980;35:5–8.
  • Olano A, Martinez-Castro I. Formation of lactulose and epilactose from lactose in basic media. A quantitative study. Milchwissenschaft. 1981;36:533–536.
  • Miyasato M, Ajisaka K. Regioselectivity in β-galactosidase-catalyzed transglycosylation for the enzymatic assembly of d-galactosyl-d-mannose. Biosci. Biotechnol. Biochem. 2004;68:2086–2090.10.1271/bbb.68.2086
  • Sato H, Saburi W, Ojima T, et al. Immobilization of a thermostable cellobiose 2-epimerase from Rhodothermus marinus JCM9785 and continuous production of epilactose. Biosci. Biotechnol. Biochem. 2012;76:1584–1587.10.1271/bbb.120284
  • Watanabe J, Nishimukai M, Taguchi H, et al. Prebiotic properties of epilactose. J. Dairy Sci. 2008;91:4518–4526.10.3168/jds.2008-1367
  • Nishimukai M, Watanabe J, Taguchi H, et al. Effects of epilactose on calcium absorption and serum lipid metabolism in rats. J. Agric. Food Chem. 2008;56:10340–10345.10.1021/jf801556m
  • Suzuki T, Nishimukai M, Takechi M, et al. The Nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines. J. Agric. Food Chem. 2010;58:1927–1932.10.1021/jf9035063
  • Suzuki T, Nishimukai M, Shinoki A, et al. Ingestion of epilactose, a non-digestible disaccharide, improves postgastrectomy osteopenia and anemia in rats through the promotion of intestinal calcium and iron absorption. J. Agric. Food Chem. 2010;58:10787–10792.10.1021/jf102563y
  • Murakami Y, Ojima-Kato T, Saburi W, et al. Supplemental epilactose prevents metabolic disorders through uncoupling protein-1 induction in the skeletal muscle of mice fed high-fat diets. Br. J. Nutr. 2015;114:1774–1783.10.1017/S0007114515003505
  • Krewinkel M, Gosch M, Rentschler E, et al. Epilactose production by 2 cellobiose 2-epimerases in natural milk. J. Dairy Sci. 2014;97:155–161.10.3168/jds.2013-7389
  • Rentschler E, Schuh K, Krewinkel M, et al. Enzymatic production of lactulose and epilactose in milk. J. Dairy Sci. 2015;98:6767–6775.10.3168/jds.2015-9900

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.