3,454
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus

, &
Pages 1712-1729 | Received 23 Jan 2016, Accepted 08 Mar 2016, Published online: 14 Apr 2016

References

  • Gilbert HJ, Hazlewood GP. Bacterial cellulases and xylanases. J. Gen. Microbiol. 1993;139:187–194.10.1099/00221287-139-2-187
  • Goyal A, Ghosh B. Characteristics of fungal cellulases. Biores. Technol. 1991;36:37–50.10.1016/0960-8524(91)90098-5
  • Watanabe H, Noda H, Tokuda G, et al. A cellulase gene of termite origin. Nature. 1998;394:330–331.10.1038/28527
  • Harris PV, Welner D, McFarland KC, et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 2010;49:3305–3316.10.1021/bi100009p
  • Morgenstern I, Powlowski J, Tsang A. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief. Funct. Genomics. 2014;13:471–481.10.1093/bfgp/elu032
  • Mandels M, Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 1957;73:269–278.
  • Bisaria VS, Mishra S. Regulatory aspects of cellulase biosynthesis and secretion. Crit. Rev. Biotechnol. 1989;9:61–103.10.3109/07388558909040616
  • Kubicek CP, Messner R, Gruber F, et al. The trichoderma cellulase regulatory puzzle: from the interior life of a secretory fungus. Enz. Microb. Technol. 1993;15:90–99.10.1016/0141-0229(93)90030-6
  • Ilmén M, Saloheimo A, Onnela M-L, et al. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 1997;63:1298–1306.
  • Nogawa M, Goto M, Okada H, et al. L-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr. Genet. 2001;38:329–334.10.1007/s002940000165
  • Stricker AR, Grosstessner-Hain K, Würleitner E, et al. Xyr1 (Xylanase Regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot. Cell. 2006;5:2128–2137.10.1128/EC.00211-06
  • Rauscher R, Würleitner E, Wacenovsky C, et al. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot. Cell. 2006;5:447–456.10.1128/EC.5.3.447-456.2006
  • Aro N, Saloheimo A, Ilmén M, et al. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 2001;276:24309–24314.10.1074/jbc.M003624200
  • Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, et al. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol. Biofuels. 2014;7:14.10.1186/1754-6834-7-14
  • Saloheimo A, Aro N, Ilmén M, et al. Isolation of the ace1 gene encoding a Cys2-His2 transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J. Biol. Chem. 2000;275:5817–5825.10.1074/jbc.275.8.5817
  • Aro N, Ilmen M, Saloheimo A, et al. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol. 2003;69:56–65.10.1128/AEM.69.1.56-65.2003
  • Nitta M, Furukawa T, Shida Y, et al. A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet. Biol. 2012;49:388–397.10.1016/j.fgb.2012.02.009
  • Strauss J, Mach RL, Zeilinger S, et al. Crel, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 1995;376:103–107.10.1016/0014-5793(95)01255-5
  • Takashima S, Iikura H, Nakamura A, et al. Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. FEMS Microbiol. Lett. 1996;145:361–366.10.1111/fml.1996.145.issue-3
  • Ilmén M, Thrane C, Penttilä M. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet. 1996;251:451–460.
  • Herpoël-Gimbert I, Margeot A, Dolla A, et al. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels. 2008;1:18.10.1186/1754-6834-1-18
  • Mandels M. Microbial sources of cellulase. Biotechnol Bioeng. 1975;5:81–105.
  • Mäntylä AL, Rossi KH, Vanhanen SA, et al. Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Curr. Genet. 1992;21:471–477.10.1007/BF00351657
  • Kawamori M, Morikawa Y, Takasawa S. Induction and production of cellulases by L-sorbose in Trichoderma reesei. Appl. Microbiol. Biotechnol. 1986;24:449–453.
  • Xu J, Takakuwa N, Nogawa M, et al. A third xylanase from Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 1998;49:718–724.10.1007/s002530051237
  • Porciuncula JDO, Furukawa T, Mori K, et al. Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan. Biosci. Biotechnol. Biochem. 2013;77:534–543.10.1271/bbb.120794
  • Shida Y, Yamaguchi K, Nitta M, et al. The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnol. Biofuels. 2015;8:3305.10.1186/s13068-015-0420-y
  • Demain AL. Biosolutions to the energy problem. J. Ind. Microbiol. Biotechnol. 2009;36:319–332.10.1007/s10295-008-0521-8
  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr. Opin. Chem. Biol. 2006;10:141–146.10.1016/j.cbpa.2006.02.035
  • Mussatto SI, Dragone G, Guimarã PM, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. 2010;28:817–e830.
  • Saloheimo M, Kuja-Panula J, Ylosmaki E, et al. Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (Cel1A). Appl. Environ. Microbiol. 2002;68:4546–4553.10.1128/AEM.68.9.4546-4553.2002
  • Du F, Wolger E, Wallace L, et al. Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay. Appl. Biochem. Biotechnol. 2010;161:313–317.10.1007/s12010-009-8796-4
  • Kubicek CP, Penttilä M. Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman GE, Kubicek CP, editors. Trichoderma and Gliocladium, Enzymes, biological control and commercial applications. Vol 2, Gunpowder Square: London; 1998. p. 49–72.
  • Margolles-Clark E, Tenkanen M, Nakari-Setala T, et al. Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1996;62:3840–3846.
  • el-Gogary S, Leite A, Crivellaro O, et al. Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc. Natl. Acad. Sci. 1989;86:6138–6141.10.1073/pnas.86.16.6138
  • Carle-Urioste JC, Escobar-Vera J, El-Gogary S, et al. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J. Biol. Chem. 1997;272:10169–10174.
  • Aro N, Pakula T, Penttilä M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 2005;29:719–739.10.1016/j.femsre.2004.11.006
  • Kubicek CP, Messner R, Gruber F, et al. Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei. Involvement of a constitutive, sophorose-inducible, glucose-inhibited beta-diglucoside permease. J. Biol. Chem. 1993;268:19364–19368.
  • Fowler T, Brown RD. The bgl1 gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol. Microbiol. 1992;6:3225–3235.10.1111/mmi.1992.6.issue-21
  • Fritscher C, Messner R. Cellobiose metabolism and cellobiohydrolase I biosynthesis by Trichoderma reesei. Exp. Mycol. 1990;14:405–415.10.1016/0147-5975(90)90063-Y
  • Sternberg D, Mandels GR. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J. Bacteriol. 1979;139:761–769.
  • Vaheri M, Leisola M, Kauppinen V. Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnol. Lett. 1979;1:41–46.10.1007/BF01395789
  • Mach RL, Seiboth B, Myasnikov A, et al. The bgl1 gene of Trichoderma reesei QM9414 encodes an extracellular, cellulose-inducible beta-glucosidase involved in cellulase induction by sophorose. Mol. Microbiol. 1995;16:687–697.10.1111/mmi.1995.16.issue-4
  • Furukawa T, Shida Y, Kitagami N, et al. Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet. Biol. 2009;46:564–574.10.1016/j.fgb.2009.04.001
  • Zhou Q, Xu J, Kou Y, et al. Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot. Cell. 2012;11:1371–1381.10.1128/EC.00170-12
  • Xu J, Nogawa M, Okada H, Morikawa Y. Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 2000;54:370–375.10.1007/s002530000410
  • Mach RL, Strauss J, Zeilinger S, et al. Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol. Microbiol. 1996;21:1273–1281.10.1046/j.1365-2958.1996.00094.x
  • Zeilinger S, Mach RL, Schindler M, et al. Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J. Biol. Chem. 1996;271:25624–25629.10.1074/jbc.271.41.25624
  • Mach RL, Zeilinger S. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 2003;60:515–522.10.1007/s00253-002-1162-x
  • Stricker AR, Steiger MG, Mach RL. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett. 2007;581:3915–3920.10.1016/j.febslet.2007.07.025
  • Stricker AR, Trefflinger P, Aro N, et al. Role of Ace2 (Activator of Cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet. Biol. 2008;45:436–445.10.1016/j.fgb.2007.08.005
  • Lichius A, Bidard F, Buchholz F, et al. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics. 2015;16:326.10.1186/s12864-015-1526-0
  • Derntl C, Gudynaite-Savitch L, Calixte S, et al. Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnol. Biofuels. 2013;6:62.10.1186/1754-6834-6-62
  • Mach-Aigner AR, Pucher ME, Steiger MG, et al. Transcriptional Regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl. Environ. Microbiol. 2008;74:6554–6562.10.1128/AEM.01143-08
  • Mach-Aigner AR, Grosstessner-Hain K, Poças-Fonseca MJ, et al. From an electrophoretic mobility shift assay to isolated transcription factors: a fast genomic-proteomic approach. BMC Genomics. 2010;11:1–10.
  • Derntl C, Rassinger A, Srebotnik E, et al. Xpp1 regulates the expression of xylanases, but not of cellulases in Trichoderma reesei. Biotechnol. Biofuels. 2015;8:1–11.
  • Aro N, Saloheimo A, Ilmén M, et al. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 2001;276:24309–24314.10.1074/jbc.M003624200
  • MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol. Mol. Biol. Rev. 2006;70:583–604.10.1128/MMBR.00015-06
  • Chilton IJ, Delaney CE, Barham-Morris J, et al. The Aspergillus nidulans stress response transcription factor StzA is ascomycete-specific and shows species-specific polymorphisms in the C-terminal region. Mycol. Res. 2008;112:1435–1446.10.1016/j.mycres.2008.06.028
  • O'Neil JD, Bugno M, Stanley MS, et al. Cloning of a novel gene encoding a C2H2 zinc finger protein that alleviates sensitivity to abiotic stresses in Aspergillus nidulans. Mycol. Res. 2002;106:491–498.10.1017/S0953756202005701
  • Cziferszky A, Mach RL, Kubicek CP. Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei). J. Biol. Chem. 2002;277:14688–14694.10.1074/jbc.M200744200
  • Espeso EA, Peñalva MA. In vitro binding of the two-finger repressor CreA to several consensus and non-consensus sites at the ipnA upstream region is context dependent. FEBS Lett. 1994;342:43–48.10.1016/0014-5793(94)80581-4
  • Kulmburg P, Mathieu M, Dowzer C, et al. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol. Microbiol. 1993;7:847–857.10.1111/mmi.1993.7.issue-6
  • Cubero B, Scazzocchio C. Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 1994;13:407–415.
  • Zeilinger S, Mach RL, Kubicek CP. Two adjacent protein binding motifs in the cbh2 (cellobiohydrolase II-encoding) promoter of the fungus Hypocrea jecorina (Trichoderma reesei) cooperate in the induction by cellulose. J. Biol. Chem. 1998;273:34463–34471.10.1074/jbc.273.51.34463
  • Würleitner E, Pera L, Wacenovsky C, et al. Transcriptional Regulation of xyn2 in Hypocrea jecorina. Eukaryot. Cell. 2003;2:150–158.10.1128/EC.2.1.150-158.2003
  • Ilmén M, Onnela ML, Klemsdal S, et al. Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol. Gen. Genet. 1996;253:303–314.
  • Margolles-clark E, Ilmén M, Penttilä M. Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J. Biotechnol. 1997;57:167–179.10.1016/S0168-1656(97)00097-7
  • Denton JA, Kelly JM. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity. BMC Biotechnol. 2011;11:103.10.1186/1472-6750-11-103
  • Brakhage AA, Andrianopoulos A, Kato M, et al. HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet. Biol. 1999;27:243–252.10.1006/fgbi.1999.1136
  • Tsukagoshi N, Kobayashi T, Kato M. Regulation of the amylolytic and(hemi-)cellulolytic genes in aspergilli. J. Gen. Appl. Microbiol. 2001;47:1–19.10.2323/jgam.47.1
  • Kato M, Aoyama A, Kobayashi T., et al. An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Mol. Gen. Genet. 1997;254:119–126.10.1007/s004380050399
  • Zeilinger S, Ebner A, Marosits T, et al. The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol. Genet. Genomics. 2001;266:56–63.
  • Périer RC, Praz V, Junier T, et al. The eukaryotic promoter database (EPD). Nucleic Acids. Res. 2000;28:302–303.10.1093/nar/28.1.302
  • Pinkham JL, Guarente L. Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol Cell Biol. 1985;5:3410–3416.10.1128/MCB.5.12.3410
  • McNabb DS, Xing Y, Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes. Dev. 1995;9:47–58.10.1101/gad.9.1.47
  • Narendja FM, Davis MA, Hynes MJ. AnCF, the CCAAT binding complex of Aspergillus nidulans, is essential for the formation of a DNase I-hypersensitive site in the 5′ region of the amdS gene. Mol. Cell Biol. 1999;19:6523–6531.10.1128/MCB.19.10.6523
  • Zeilinger S, Schmoll M, Pail M, et al. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol. Genet. Genomics. 2003;270:46–55.10.1007/s00438-003-0895-2
  • Negrete-Urtasun S, Denison SH, Arst HN Jr. Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. J. Bacteriol. 1997;179:1832–1835.
  • Trevisan GL, Oliveira EH, Peres NT, et al. Transcription of Aspergillus nidulans pacC is modulated by alternative RNA splicing of palB. FEBS Lett. 2011;585:3442–3445.10.1016/j.febslet.2011.09.037
  • Galindo A, Hervás-Aguilar A, Rodríguez-Galán O, et al. PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic. 2007;8:1346–1364.10.1111/j.1600-0854.2007.00620.x
  • Hervás-Aguilar A, Galindo A, Peñalva MA. Receptor-independent Ambient pH signaling by ubiquitin attachment to fungal arrestin-like PalF. J. Biol. Chem. 2010;285:18095–18102.10.1074/jbc.M110.114371
  • Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, et al. Establishment of the Ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot. Cell. 2007;6:2365–2375.10.1128/EC.00275-07
  • Tilburn J, Sarkar S, Widdick DA, et al. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995;14:779–790.
  • He R, Ma L, Li C, et al. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei. Enz. Microb. Technol. 2014;67:17–26.10.1016/j.enzmictec.2014.08.013
  • Häkkinen M, Sivasiddarthan D, Aro N, et al. The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb. Cell Fact. 2015;14:63.10.1186/s12934-015-0247-z
  • Henrique-Silva F, El-Gogary S, Carle-Urioste JC, et al. Two regulatory regions controlling basal and cellulose-induced expression of the gene encoding cellobiohydrolase I of Trichoderma reesei are adjacent to its TATA box. Biochem. Biophys. Res. Commun. 1996;228:229–237.10.1006/bbrc.1996.1646
  • Ling M, Qin Y, Li N, et al. Binding of two transcriptional factors, Xyr1 and ACEI, in the promoter region of cellulase cbh1 gene. Biotechnol. Lett. 2009;31:227–231.10.1007/s10529-008-9857-4
  • Stangl H, Gruber F, Kubicek CP. Characterization of the Trichoderma reesei cbh2 promoter. Curr. Genet. 1993;23:115–122.10.1007/BF00352009
  • Schmoll M, Kubicek CP. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol. Immunol. Hung. 2003;50:125–145.10.1556/AMicr.50.2003.2-3.3
  • Shida Y, Furukawa T, Ogasawara W, et al. Functional analysis of the egl3 upstream region in filamentous fungus Trichoderma reesei. Appl. Microbiol. Biotechnol. 2008;78:515–524.10.1007/s00253-007-1338-5
  • Ogasawara W, Shida Y, Furukawa T, et al. Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl. Microbiol. Biotechnol. 2006;72:995–1003.10.1007/s00253-006-0365-y
  • Furukawa T, Shida Y, Kitagami N, et al. Identification of the cis-acting elements involved in regulation of xylanase III gene expression in Trichoderma reesei PC-3-7. Fungal Genet. Biol. 2008;45:1094–1102.10.1016/j.fgb.2008.03.006
  • Nevalainen H, Suominen P, Taimisto K. On the safety of Trichoderma reesei. J. Biotechnol. 1994;37:193–200.10.1016/0168-1656(94)90126-0
  • Wang TH, Liu T, Wu ZH, et al. Novel cellulase profile of Trichoderma reesei strains constructed by cbh1 gene replacement with eg3 gene expression cassette. Acta Biochim. Biophys. Sin. 2004;36:667–672.10.1093/abbs/36.10.667
  • Miettinen-Oinonen A, Suominen P. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl. Environ. Microbiol. 2002;68:3956–3964.10.1128/AEM.68.8.3956-3964.2002
  • Miettinen-Oinonen A, Paloheimo M, Lantto R, et al. Enhanced production of cellobiohydrolase in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J. Biotechnol. 2004;116:305–317.
  • Mäntylä A, Paloheimo M, Hakola S, et al. Production in Trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp. Appl. Microbiol. Biotechnol. 2007;76:377–386.10.1007/s00253-007-1020-y
  • Paloheimo M, Mäntylä A, Kallio J, et al. Increased production of xylanase by expression of a truncated version of the xyn11A gene from Nonomuraea flexuosa in Trichoderma reesei. Appl. Environ. Microbiol. 2007;73:3215–3224.10.1128/AEM.02967-06
  • Keränen S, Penttilä M. Production of recombinant proteins in the filamentous fungus Trichoderma reesei. Curr. Opin. Biotechnol. 1995;6:534–537.10.1016/0958-1669(95)80088-3
  • Penttilä M. Heterologous protein production in the Trichoderma. In: Harman GE, Kubicek CP, editors. Trichoderma and Gliocladium. Gunpowder Square: London; 1998. p. 365–382.
  • Rahman Z, Shida Y, Furukawa T, et al. Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters. Appl. Microbiol. Biotechnol. 2009;82:899–908.10.1007/s00253-008-1841-3
  • Duff SJB, Murray WD. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Biores. Technol. 1996;55:1–33.10.1016/0960-8524(95)00122-0
  • Nieves RA, Ehrman CI, Adney WS, et al. Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J. Microbiol. Biotechnol. 1998;14:301–304.
  • Rahman Z, Shida Y, Furukawa T, et al. Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular β-glucosidase I. Biosci Biotechnol Biochem. 2009;73:1083–1089.10.1271/bbb.80852
  • Nitta M, Shida Y, Okada H, et al. Hyphal surface architecture and cell morphology of Trichoderma reesei. J. Electron Microsc. (Tokyo). 2012;61:187–192.
  • Osumi M, Yamada N, Yaguchi H, et al. Ultrahigh-resolution low-voltage SEM reveals ultrastructure of the glucan network formation from fission yeast protoplast. J. Electron Microsc. 1995;44:198–206.
  • Chapman CM, Loewenberg JR, Schaller MJ, et al. Ultrastructural localization of cellulase in Trichoderma reesei using immunocytochemistry and enzyme cytochemistry. J. Histochem. Cytochem. 1983;31:1363–1366.10.1177/31.12.6195212
  • Sprey B. Localisation of β-glucosidase in Trichoderma reesei cell walls with immunoelectron microscopy. FEMS Microbiol. Lett. 1986;36:287–292.
  • Sprey B. Cellular and extracellular localization of endocellulase in Trichoderma reesei. FEMS Microbiol. Lett. 1988;55:283–294.10.1111/fml.1988.55.issue-3
  • Ghosh A, Ghosh BK, Trimino-Vazquez H, et al. Cellulase secretion from a hyper-cellulolytic mutant of Trichoderma reesei Rut-C30. Arch. Microbiol. 1984;140:126–133.10.1007/BF00454914
  • Kurzątkowski W, Solecka J, Filipek J, et al. Ultrastructural localization of cellular compartments involved in secretion of the low molecular weight, alkaline xylanase by Trichoderma reesei. Arch. Microbiol. 1993;159:417–422.10.1007/BF00288587
  • Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24:133–141.10.1016/j.tig.2007.12.007
  • Spatz SJ, Rue CA. Sequence determination of a mildly virulent strain (CU-2) of Gallid herpesvirus type 2 using 454 pyrosequencing. Virus Genes. 2008;36:479–489.10.1007/s11262-008-0213-5
  • Holt KE, Parkhill J, Mazzoni CJ, et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat. Genet. 2008;40:987–993.10.1038/ng.195
  • Kotewicz ML, Mammel MK, LeClerc JE, et al. Optical mapping and 454 sequencing of Escherichia coli O157: H7 isolates linked to the US 2006 spinach-associated outbreak. Microbiology. 2008;154:3518–3528.10.1099/mic.0.2008/019026-0
  • Manning SD, Motiwala AS, Springman AC, et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA. 2008;105:4868–4873.10.1073/pnas.0710834105
  • Novaes E, Drost DR, Farmerie WG, et al. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics. 2008;9:312.10.1186/1471-2164-9-312
  • Sadia B, Craig J, Hudson M, et al. Genomic DNA sequence comparison between two inbred soybean cyst nematode biotypes facilitated by massively parallel 454 micro-bead sequencing. Mol. Genet. Genomics. 2008;279:535–543.
  • Qi W, Käser M, Röltgen K, et al. Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog. 2009;5:e1000580.10.1371/journal.ppat.1000580
  • Wang J, Wang W, Li R, et al. The diploid genome sequence of an Asian individual. Nature. 2008;456:60–65.10.1038/nature07484
  • Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452:872–876.10.1038/nature06884
  • Marie-Nelly H, Marbouty M, Cournac A, et al. High-quality genome (re)assembly using chromosomal contact data. Nat. Commun. 2014;5:5695.10.1038/ncomms6695
  • Le Crom S, Schackwitz W, Pennacchio L, et al. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA. 2009;106:16151–16156.10.1073/pnas.0905848106
  • Koike H, Aerts A, LaButti K, et al. Comparative genomics analysis of Trichoderma reesei strains. Ind. Biotechnol. 2013;9:352–367.10.1089/ind.2013.0015
  • Ries L, Pullan ST, Delmas S, et al. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics. 2013;14:541.10.1186/1471-2164-14-541
  • Kang K, Zhong J, Jiang L, et al. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing. PLoS ONE. 2013;8:e76288.10.1371/journal.pone.0076288
  • Nakazawa H, Kawai T, Ida N, et al. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol. Bioeng. 2012;109:92–99.10.1002/bit.v109.1
  • Nakazawa H, Kawai T, Ida N, et al. A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion. Enzyme Microb. Technol. 2016;82:89–95.10.1016/j.enzmictec.2015.08.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.