4,247
Views
48
CrossRef citations to date
0
Altmetric
Reviews

Development of enzyme technology for Aspergillus oryzae, A. sojae, and A. luchuensis, the national microorganisms of Japan

Pages 1681-1692 | Received 14 Dec 2015, Accepted 06 Apr 2016, Published online: 06 May 2016

References

  • Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438:1157–1161.10.1038/nature04300
  • Sakaguchi K, Yamada K. Morphology and classification of Aspergillus fungi. Nihon Nougeikagaku Kaishi [J. Agric. Chem. Soc. Japan]. 1944;20:65–73, 141–154. Japanese.
  • Sato A, Oshima K., Noguchi H, et al. Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Res. 2011;18:165–176.10.1093/dnares/dsr009
  • Yamada O, Takara R, Hamada R, et al. Molecular biological researches of Kuro-Koji molds, their classification and safety. J. Biosci. Bioeng. 2011;112:233–237.10.1016/j.jbiosc.2011.05.005
  • Hong SB, Lee M, Kim DH, et al. Aspergillu luchuensis, an industrially important black Aspergillus in east Asia. PLOS ONE. 2013;8:e63769.
  • Hong SB, Yamada O, Samson RA. Taxinomic re-evaluation of black koji mold. Appl. Microbiol. Biotechnol. 2014;98:555–561.10.1007/s00253-013-5332-9
  • Takamine J. Process of making diastatic enzyme. US Patent No.525,813. Peoria, IL. patented 1894 Sept 11.
  • Ishida M. Hormone hanters - Discovery of adrenaline. Kyoto: Kyoto University Press; 2012. Japanese. ISBN: 978-4-87698-587-6.
  • Akabori S, Hagihara B, Ikenaka T. Purification and crystallization of Taka-amylase. Proc. Jpn. Acad. Ser. B. 1951;27:350–351.
  • Akabori S, Ikenaka T, Hagihara B. Isolation of crystalline taka-amylase A from “Takadiastase Sankyo”. J. Biochem. 1954;41:577–582.
  • Kitahara K, Kurushima M. Studies on the components of diastases from Aspergillus filamentous fungi. (Part 5) On the existence of a new amylase, γ-amylase. Hatuko Kogakukai-Shi [J. Ferment. Technol. Japan]. 1949;21:254–257. Japanese.
  • Hayashida S, Narahara K, Kanlayakrit W, et al. Characteristics and function of raw-starch-affinity site on Aspergillus awamori var. kawachii glucoamylase molecule. Agric. Biol. Chem. 1989;53:143–149.
  • Hayashida S, Nakahara K, Kuroda K, et al. Structure of the raw-starch-affinity site on the Aspergillus awamori var. kawachii. Agric. Biol. Chem. 1989;53:135–141.
  • Goto M, Semimaru T, Furukawa K, et al. Analysis of the raw-starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachii expressed in Saccahromyces cerevisiae. Appl. Environ. Microbiol. 1994;60:3926–3930.
  • Goto M, Tsukamoto Masaki, Kwon I, et al. Functional analysis of O-linked oligosaccharides in threonine/serine-rich region of Aspergillus glucoamylase by expression in mannosyl transferase-disruptants of yeast. Eur. J. Biochem. 1999;260:596–602.10.1046/j.1432-1327.1999.00207.x
  • Sato K, Egami F. Studies on ribonucleases in Takadiastase. I. J. Biochem. 1957;44:753–763.
  • Ando T. A nuclease specific for heat-denatured DNA isolated from product of Aspergillus oryzae. Biochim. Biophys. Acta. 1966;114:158–168.
  • Fushimi N, Ee CE, Nakajima T, et al. Aspzincin, a family of metalloendopeptidases with a new zinc-binding motif. J. Biol. Chem. 1999;274:24195–24201.10.1074/jbc.274.34.24195
  • Sekine H. Neutral proteinases I and II of Aspergillus sojae. Isolation in homogeneous form. Agr. Biol. Chem. 1972;36:198–206.
  • Ito K, Koyama Y. Analysis of specific proteolytic digestion of peptidoglutaminase-asparaginase of koji molds. J. Biosci. Bioeng. 2014;118:253–255.10.1016/j.jbiosc.2014.02.007
  • Ito K, Hanya Y, Koyama Y. Purification and characterization of a glutaminase enzyme accounting for the majority of glutaminase activity in Aspergillus sojae under solid-state culture. Appl. Microbiol. Biotechnol. 2013;97:8581–8590.10.1007/s00253-013-4693-4
  • Ito K, Koyama Y, Hanya Y. Identification of the glutaminase genes of Aspergillus sojae involved in glutamate production during soy sauce fermentation. Biosci. Biotechnol. Biochem. 2013;77:1832–1840.10.1271/bbb.130151
  • Ito K, Matsushima K, Koyama Y. Gene cloning, purification and characterization of a novel peptidoglutaminase-asparaginase from Aspergillus sojae. Appl. Environ. Microbiol. 2013;78:5182–5188.
  • Yoshida F. Studies on the proteolytic enzymes of black aspergilli. Part I. Investigation of strains producing proteinase yields a black Aspergillus and the crystallization of proteolytic enzymes from Aspergillus saitoi. Bull. Agric. Chem. Soc. Japan. 1956;20:252–256.
  • Ichishima E, Yoshida F. Molecular weight of acid proteinase from Aspergillus saitoi. Nature. 1965;207:525–526.10.1038/207525a0
  • Ichishima E, Yoshida F. Chromatographic purification and physical homogeneity of acid proteinase of Aspergillus saitoi. Biochim. Biophys. Acta. 1965;99:360–366.10.1016/S0926-6593(65)80133-3
  • Majima E, Oda K, Murao S, et al. Comparative study on the specificity of several fungal aspartic and acidic proteinases towards the tetradecapeptide of a renin substrate. Agirc. Biol. Chem. 1988;52:787–793.10.1271/bbb1961.52.787
  • Gabeloteau C, Desnuelle P. On the activation of beef trypsinogen by a crystallized proteinase of Aspergillus saitoi. Biochim. Biophys. Acta. 1960;42:230–237.10.1016/0006-3002(60)90786-1
  • Abita JP, Delaage M, Lazdunski M, et al. The mechanism of activation of trypsinogen. The role of the four N-terminal aspartyl residues. Eur. J. Biochem. 1969;8:314–324.10.1111/ejb.1969.8.issue-3
  • Shintani T, Ichishima E. Primary structure of aspergillopepsin I deduced from nucleotide sequence of the gene and aspartic acid-76 is an essential active site of the enzyme for trypsinogen activation. Biochim. Biophys. Acta. 1994;1204:257–264.10.1016/0167-4838(94)90016-7
  • Lee BR, Furukawa M, Yamashita K, et al. Aorsin, a novel serine proteinase with trypsin-like specificity at acidic pH. Biochem. J. 2003;371:541–548.10.1042/bj20021691
  • Ichishima E. Purification and characterization of a new type of acid carboxypeptidase from Aspergillus saitoi. Biochim. Biophys. Acta. 1972;258:274–288.10.1016/0005-2744(72)90985-0
  • Ichishima E, Arai T. Specificity and mode of action of acid carboxypeptidase from Aspegillus saitoi. Biochim. Biophys. Acta. 1973;293:444–450.10.1016/0005-2744(73)90351-3
  • Ichishima E. Mode of action and application of Aspergillus carboxypeptidase. Comments Agric. & Food Chemistry. 1991;2:279–298.
  • Takaki A, Yoshitake S, Ishiguro M, et al. Anticoagulant peptide obtained from fibrinogenic product by plasmin. II. Sequence determination of the peptide. Proc. Jpn. Acad. 1972;48:534–538.
  • Chiba Y, Midorikawa T, Ichishima E. Cloning and expression of the carboxypeptidase gene from Aspergillus saitoi and determination of the catalytic residues by site-directed mutagenesis. Biochem. J. 1995;308:405–409.10.1042/bj3080405
  • Chiba Y, Yamagata Y, Nakajima T, et al. A new high-mannose type N-linked oligosaccharide from Aspergillus carboxypeptidase. Biosci. Biotechnol. Biochem. 1992;56:1371–1372.10.1271/bbb.56.1371
  • Chiba Y, Yamagata Y, Iijima S, et al. The carbohydrate moiety of the acid carboxypeptidase from Aspergillus saitoi. Curr. Microbiol. 1993;27:281–288.
  • Ichishima E, Arai M, Shigematsu Y, et al. Purification and acidic α-d-mannosidase from Aspergillus saitoi and specific cleavage of 1,2-α-d-mannosidic linkage in yeast manan. Biochim. Biophys. Acta. 1981;658:45–53.
  • Yamashita K, Ichishima E, Arai M, et al. An α-mannosidase purified from Aspergillus saitoi is specific for α1,2 linkages. Biochem. Biophys. Res. Commun. 1980;96:1335–1342.10.1016/0006-291X(80)90097-2
  • Tatara Y, Lee BR, Yoshida T, et al. Identification of catalytic residues of Ca2+-independent 1,2-α-mannosidse from Aspergillus saitoi by site-directed mutagenesis. J. Biol. Chem. 2005;278:25289–25294.
  • Chiba Y, Suzuki M, Yoshida S, et al. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J. Biol. Chem. 1998;273:26298–26304.10.1074/jbc.273.41.26298
  • Ichishima E, Maeba H, Amikura T, et al. Multiple forms of protyrosinase from Aspergillus oryzae and their mode of activation at pH 3.0. Biochim. Biophys. Acta. 1984;786:25–31.10.1016/0167-4838(84)90149-3
  • Fujita Y, Uraga Y, Ichisima E. Molecular cloning and nucleotide sequence of the protyrosinase gene, melO, from Aspergillus oryzae and expression of the gene in yeast. Biochim. Biophys. Acta. 1995;1261:151–154.10.1016/0167-4781(95)00011-5
  • Tatara Y, Namba T, Yamagata Y, et al. Acid activation of protyrosinase from Aspergillus oryzae: homo-tetrameric protyrosinase is converted to active dimers with an essential intersubunit disulfide bond at acidic pH. Pigment Cell Melanoma Res. 2007;21:89–96.10.1111/j.1755-148X.2007.00422.x
  • Ishida H, Matsumura K, Hata Y, et al. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control. Appl. Microbiol. Biotechnol. 2001;57:131–137.
  • Brew. Soc. Jpn. The national fungi of Japan. http://www.jozo.or.jp/koujikinnituite2.pdf 2006
  • Toda H, Kondo K, Narita K. The complete amino acid sequence of Taka-amylaseA. Proc. Jpn. Acad. Ser. B. 1982;58:208–212.10.2183/pjab.58.208
  • Tada S, Iimura Y, Gomi K, et al. Cloning and nucleotide sequence of the genomic Taka-amylase A gene of Aspergillus oryzae. Agric. Biol. Chem. 1989;53:593–599.
  • Matsuura Y, Kusunoki M, Harada W, et al. Molecular structure of Taka-amylase A. I. Backbone chain folding at 3 Ǻ. J. Biochem. 1980;87:1555–1558.
  • Matsuura Y, Kusunoki M, Harada W, et al. Structure and possible catalytic residue of Taka-amylase A. J. Biochem. 1984;95:697–702.
  • Hata Y, Ishida H, Ichikawa E, et al. Nucleotide sequence of an alternative glucoamylase-encoding gene (glaB) expressed in solid-state culture of Aspergillus oryzae. Gene. 1987;207:127–134.
  • Hata Y, Kitamoto K, Gomi K, et al. The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Agric. Biol. Chem. 1991;55;941–949.
  • Hata Y, Ishida H, Kojima Y, et al. Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (koji) and in submerged culture. J. Ferment. Bioeng. 1997;84:532–537.10.1016/S0922-338X(97)81907-1
  • Hisada H, Sano M, Ishida H, et al. Identification of regulatory elements in the glucoamylase-encoding gene (glaB) promoter from Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2013;97:4951–4956.10.1007/s00253-012-4622-y
  • Ueda S. Studies on the amylolytic system of the black-koji molds. Part II. Raw starch digestability of the saccharogenic amylase fraction and its interaction with the dextrogenic amylase fraction. Bull. Agr. Chem. Soc. Japan. 1956;21:284–287.
  • Yamanaka K. Studies on the pyruvate and carbohydrate metabolisms by lactic acid bacteria. Part IX. Formation of ketopentose by lactic acid bacteria. Bull. Agr. Chem. Soc. Japan. 1958;22:299–308.
  • Yamanaka K. Fructose synthesis from glucose ‐ A new method of isomerizing sugar. Kagaku To Saeibutu. 2011;48:643–651. Japanese.
  • Hirotsune M. New function of ethyl α-d-glucoside. Nippon Jyōzōkyōkai Shi [J. Brewing Soc. Japan]. 2004;99:836–841. Japanese.
  • Chiba S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 1997;61:1233–1239.10.1271/bbb.61.1233
  • Takahashi K. The amino acid sequence of ribonuclease T1. J. Biol. Chem. 1965;240:4117–4119.
  • Oobatake M, Takahashi K, Ooi T. Conformational stability of ribonuclease T1. II. Salt-induced renaturation. J. Biochem. 1979;86:65–70.
  • Anfinsen CB, Scheraga HA. Experimental aspects of protein folding. Adv. Protein Chem. 1975;29:205–300.10.1016/S0065-3233(08)60413-1
  • Nishikawa S, Morioka H, Kim HJ, et al. Two histidine residues are essential for ribonuclease T1. Biochemistry. 1987;26:8620–8624.10.1021/bi00400a019
  • Steyaert J. A decade of protein engineering on ribonuclease T1-atomic dissection of the enzyme-substrate interactions. Eur. J. Biochem. 1997;247:1–11.10.1111/ejb.1997.247.issue-1
  • Sutton WD. A crude nuclease preparation suitable for use in DNA ressociation experiments. Biochim. Biophys. Acta. 1971;240:522–531.10.1016/0005-2787(71)90709-X
  • Vogt VM. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973;33:192–200.10.1111/ejb.1973.33.issue-1
  • Volbed A, Lahm A, Sakiyama F, et al. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. EMBO J. 1991;10:1607–1618.
  • Beck RW. 1966. P. Molecular biology: S1 Nuclease. BISEIBUTUGAKU NO REKISHI [A Chronology of Microbiology in Historical Context]. Tokyo: ASAKURA SHOTEN (ASM Press,Washington, DC 2004). 2004;II:144. Japanese.
  • Doi Y, Lee BR, Ikeguchi M, et al. Substrate specificities of deuterolysin from Aspergillus oryzae and electron paramagnetic resonance measurement of cobalt-substituted deuterolysin. Biosci. Biotechnol. Biochem. 2003;76:264–270.
  • Yamaguchi M, Hanzawa S, Hirano K, et al. Specificity and molecular properties of penicillolysin, a metalloproteinase from Penicillium citrinum. Phytochemistry. 1993;33:1317–1321.10.1016/0031-9422(93)85082-3
  • Matsumoto K, Yamaguchi M, Ichishima E. Molecular cloning and nucleotide sequence of the complementary DNA for penicillolysin gene, plnC, an 18 kDa metalloendopeptidase gene from Penicillium citrinum. Biochim. Biophys. Acta. 1994;1218:469–472.10.1016/0167-4781(94)90209-7
  • Doi Y, Akiyama H, Yamada Y, et al. Thermal stabilization of penicillolysin, a thermolabile 19 kDa Zn2+-protease, obtained by site-directed mutagenesis. Protein Eng. Des. Select. 2004;17:261–266.
  • Subramanian AR, Kalnitsky G. The major alkaline proteinase of Aspergillus oryzae, aspergillopeptidase B. I. Isolation in homogeneous form. Biochemistry. 1964;3:1861–1867.
  • Subramanian AR, Kalnitsky G. The major alkaline proteinase of Aspergillus oryzae, aspergillopeptidase B. II. Partial specific volume, molecular weight and amino acid composition. Biochemistry. 1964;3:1868–1874.10.1021/bi00900a013
  • Hayashi K, Terada M. Some characteristics of hydrolysis of synthetic substrates and proteins by the alkaline proteases from Aspergillus sojae. Agric. Biol. Chem. 1972;36:1755–1765.10.1080/00021369.1972.10860476
  • Murakami K, Ishida Y, Masaki A, et al. Isolation and characterization of the alkaline protease gene of Aspergillus oryzae. Agric. Biol. Chem. 1991;55:2807–2811.
  • Udo S. Studies on the Umami taste of soy sauce. (Part 4) Correlation of the chemical components and the Umami taste of soy sauce. Nihon Nougeikagaku Kaishi [J. Agric. Chem. Soc. Japan]. 1932;8:675–684. Japanese.
  • Sunde M, Kwan AH, Templeton MD, et al. Structural analysis of hydrophobins. Micron. 2008;39:773–784.10.1016/j.micron.2007.08.003
  • Wessels J, De Vries O, Asgerirsdottir SA, et al. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell. 1991;3:793–799.10.1105/tpc.3.8.793
  • Maeda H, Yamagata Y, Abe K, et al. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2005;67:778–788.10.1007/s00253-004-1853-6
  • Tanaka T, Tanabe H, Uehara K, et al. Involvement of hydrophobic amino acid residues in C7–C8 loop of Aspergillus oryzae hydrophobin RolA in hydrophobic interaction between RolA and a polyester. Biosci. Biotechnol. Biochem. 2014;78:1693–1699.10.1080/09168451.2014.932684
  • Takahashi T, Tanaka T, Tsushima Y, et al. Ionic interaction of positive amino acid residues of fungal hydrophobin RolA with acidic amino acid residues of cutinase CutL1. Mol. Microbiol. 2015;96:14–27.
  • Sakaguchi K, Iizuka H, Yamazaki S. A study on black Aspergilli. Nihon Nougeikagaku Kaishi [J. Agric. Chem. Soc. Japan]. 1950;24:138–142. Japanese.
  • Ichishima E. Unique enzymes of Aspergillus fungi used in Japnese bioindustries. New York, NY: Nova Science Publishers; 2012.
  • Shintani T, Kobayashi M, Ichishima E. Characterization of the S1 subsite specificity of aspergillopepsin I by site-directed mutagenesis. J. Biochem. 1996;120:974–991.
  • Shintani T, Nomura K, Ichishima E. Engineering of porcine. Alterration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis. J. Biol. Chem. 1997;272:18855–18861.10.1074/jbc.272.30.18855
  • Wlodawer A, Li M, Dauter Z, et al. Carboxyl proteinase from pseudomonas defines a novel family of subtilisin-like enzymes. Nat. Struct. Biol. 2001;8:442–446.10.1038/87610
  • Arai S, Yamashita M, Kato H, et al. Applying proteolytic enzymes on soybean. Part V. A nondialyzable bitter peptide in peptic hydrolysate of soybean protein and its bitterness in relations to the chemical structure. Agric. Biol. Chem. 1970;34:729–738.
  • Fujita A, Yoshida T, Ichishima E. Five crucial carboyl residues of 1,2-α-mannosidase from Aspergillus saitoi (A. phoenisis), a food microorganism, are identified by site-directed mutagenesis. Biochem. Biophys. Res. Commun. 1997;238:779–783.10.1006/bbrc.1997.7389
  • Ichishima E, Taya N, Ikeguchi M, et al. Molecular and enzymatic properties of recombinant 1,2-α-mannosidase from Aspergillus saitoi overexpressed in Aspergillus oryzae cells. Biochem. J. 1999;339:589–597.10.1042/bj3390589
  • Tatara Y, Yoshida T, Ichishima E. A single free cysteine residue and disulfide bond contribute to the thermostability of Aspergillus saitoi 1,2-α-mannosidase. Biosci. Biotechnol. Biochem. 2005;69:2101–2108.10.1271/bbb.69.2101
  • Lobsanov YD, Vallée F, Imberty A, et al. Structure of Penicillium citrinum α1,2-mannosidase reveals the basis for differences in specificity of the endoplasmic reticulum and Golgi Class I enzymes. J. Biol. Chem. 2002;277:5620–5630.
  • Yoshida T, Kato Y, Asada Y, et al. Filamentous fungus Aspergillus oryzae has two types of α-1,2-mannosidases, one of which is a microsomal enzyme that removes a single mannose residue from Man9GlcNAc2. Glycoconj. J. 2000;17:745–748.
  • Akao T, Yahara A, Sakamoto K, et al. Lack of endoplasmic reticulum 1,2-α-mannosidase activity that trims N-glycan Man9GlcNAc2 to Man8GlcNAc2 isomer B in a manE gene disruptant of Aspergillus oryzae. J. Biosci. Bioeng. 2012;113:438–441.10.1016/j.jbiosc.2011.11.015
  • Yabuta T. The constitution of kojic acid, a γ-pyrone derivative formed by Aspergillus oryzae from carbohydrates. J. Chem. Soc. 1924;125:575.10.1039/CT9242500575
  • Tanaka T, Takeuchi M, Ichishima E. Inhibition study of tyrosinase from Aspergillus oryzae. Agric. Biol. Chem. 1989;53:557–558.
  • Obata H, Ishida H, Hata Y, et al. Cloning of a novel tyrosinase-encoding gene (melB) from Aspergillus oryzae and its overexpression in solid-state culture (Rice Koji). J. Biosci. Bioeng. 2004;97:400–405.10.1016/S1389-1723(04)70226-1
  • Copeland RA. ENZYMES – a practical introduction to structure, mechanism, and data analysis. 2nd ed. New York, NY: John Wiley & Sons; 2000.
  • Barkesgaard P, Heldt-Hansen HP, Diderichsen B. On the safety of Aspergillus oryzae: a review. Appl. Microbiol. Biotechnol. 1992;36:569–572.
  • Taylor MJ, Richardson T. Application of microbial enzymes in food systems and in biotechnology. Adv. Appl. Microbiol. 1979;25:7–35.10.1016/S0065-2164(08)70144-8
  • Tominaga M, Lee YH, Hayashi R, et al. Molecular analysis of an inactive aflatoxin biosynthesis gene claster in Aspergillus oryzae RIB strains. Appl. Environ. Microbiol. 2006;72:484–490.10.1128/AEM.72.1.484-490.2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.