7,561
Views
70
CrossRef citations to date
0
Altmetric
Reviews

Cell wall structure and biogenesis in Aspergillus species

, &
Pages 1700-1711 | Received 28 Dec 2015, Accepted 06 Apr 2016, Published online: 03 May 2016

References

  • Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438:1157–1161.10.1038/nature04300
  • Galagan JE, Calvo SE, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105–1115.10.1038/nature04341
  • Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438:1151–1156.10.1038/nature04332
  • Pel HJ, de Winde JH, Archer DB, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007;25:221–231.10.1038/nbt1282
  • Machida M, Yamada O, Gomi K. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res. 2008;15:173–183.10.1093/dnares/dsn020
  • Hong SB, Lee M, Kim DH, et al. Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS ONE. 2013;8:e63769.10.1371/journal.pone.0063769
  • Kobayashi T, Abe K, Asai K, et al. Genomics of Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2007;71:646–670.10.1271/bbb.60550
  • Oda K, Kakizono D, Yamada O, et al. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl. Environ. Microbiol. 2006;72:3448–3457.10.1128/AEM.72.5.3448-3457.2006
  • Abe K, Gomi K, Hasegawa F, et al. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia. 2006;162:143–153.10.1007/s11046-006-0049-2
  • FAO/WHO. Committee on food additives 31. World Health Organization Technical Report Series: Geneva; 1987
  • Sakai K, Kinoshita H, Shimizu T, et al. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J. Biosci. Bioeng. 2008;106:466–472.10.1263/jbb.106.466
  • Yu J, Proctor R, Brown D, et al. Genomics of economically significant Aspergillus and Fusarium species. In: Arora DK, Khachatourians GG, editors. Applied mycology and biotechnology: fungal genomics. New York, NY: Elsevier; 2003. p. 249–283.
  • Arpaia G, Cerri F, Baima S, et al. Involvement of protein kinase C in the response of Neurospora crassa to blue light. Mol. Gen. Genet. 1999;262:314–322.10.1007/s004380051089
  • Damveld RA, Arentshorst M, Franken A, et al. The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Mol. Microbiol. 2005;58:305–319.10.1111/j.1365-2958.2005.04827.x
  • Fujioka T, Mizutani O, Furukawa K, et al. MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot. Cell. 2007;6:1497–1510.10.1128/EC.00281-06
  • Colabardini AC, de Castro PA, de Gouvêa PF, et al. Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. Mol. Microbiol. 2010;78:1259–1279.10.1111/j.1365-2958.2010.07403.x
  • Futagami T, Nakao S, Kido Y, et al. Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. Eukaryot. Cell. 2011;10:1504–1515.10.1128/EC.05080-11
  • Futagami T, Goto M. Putative cell wall integrity sensor proteins in Aspergillus nidulans. Communicat. Integrat. Biol. 2012;5:206–208.10.4161/cib.18993
  • Abe K, Gomi K, Hasegawa F, et al. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia. 2006;162:143–153.10.1007/s11046-006-0049-2
  • Latgé JP. Aspergillus fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999;12:310–350.
  • Beauvais A, Fontaine T, Aimanianda V, et al. Aspergillus Cell Wall and Biofilm. Mycopathologia. 2014;178:371–377.10.1007/s11046-014-9766-0
  • Levin DE. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2005;69:262–291.10.1128/MMBR.69.2.262-291.2005
  • Levin DE. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics. 2011;189:1145–1175.10.1534/genetics.111.128264
  • Klis FM. Review: cell wall assembly in yeast. Yeast. 1994;10:851–869.10.1002/(ISSN)1097-0061
  • Hagiwara D, Yoshimi A, Sakamoto K, et al. Response and adaptation to cell wall stress and osmotic stress in Aspergillus species. In: Takagi H, and Kitagaki H, editors. Stress Biology of Yeasts and Fungi. Tokyo: Springer Japan; 2015. p. 199–218.
  • Fontaine T, Simenel C, Dubreucq G, et al. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Biol. Chem. 2000;275:27594–27607.
  • Latgé JP. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 2007;66:279–290.10.1111/mmi.2007.66.issue-2
  • Latgé JP. Tasting the fungal cell wall. Cellular Microbiol. 2010;12:863–872.10.1111/cmi.2010.12.issue-7
  • Gastebois A, Clavaud C, Aimanianda V, et al. Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol. 2009;4:583–595.10.2217/fmb.09.29
  • Ikeda K, Inoue K, Kitagawa H, et al. The role of the extracellular matrix (ECM) in phytopathogenic fungi: a potential target for disease control. In: Cumagun CJ, editor. Plant Pathology. ISBN: 978-953-51-0489-6, Rijeka: InTech; 2012. p. 131–150.
  • Morelle W, Bernard M, Debeaupuis JP, et al. Galactomannoproteins of Aspergillus fumigatus. Eukariot. Cell. 2005;4:1308–1316.
  • Bernard M, Latgé JP. Aspergillus fumigatus cell wall: composition and biosynthesis. Med. Mycol. 2001;39:9–17.10.1080/744118873
  • Yoshimi A, Sano M, Inaba A, et al. Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: AgsB is the major α-1,3-glucan synthase in this fungus. PLoS one. 2013;8:e54893.10.1371/journal.pone.0054893
  • Hogan LH, Klein BS. Altered expression of surface alpha-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect Immun. 1994;62:3543–3546.
  • Reese AJ, Doering TL. Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 2003;50:1401–1409.10.1046/j.1365-2958.2003.03780.x
  • Rappleye CA, Goldman WE. Defining virulence genes in the dimorphic fungi. Annu. Rev. Microbiol. 2006;60:281–303.10.1146/annurev.micro.59.030804.121055
  • Fujikawa T, Kuga Y, Yano S, et al. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol. Microbiol. 2009;73:553–570.10.1111/mmi.2009.73.issue-4
  • Beauvais A, Maubon D, Park S, et al. Two α(1-3) glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol. 2005;71:1531–1538.10.1128/AEM.71.3.1531-1538.2005
  • Damveld RA, vanKuyk PA, Arentshorst M, et al. Expression of agsA, one of five 1,3-α-d-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress. Fungal Genet. Biol. 2005;42:165–177.10.1016/j.fgb.2004.11.006
  • Maubon D, Park S, Tanguy M, et al. AGS3, an α(1-3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol. 2006;43:366–375.10.1016/j.fgb.2006.01.006
  • Henry C, Latgé JP, Beauvais A. α1,3 glucans are dispensable in Aspergillus fumigatus. Eukaryot. Cell. 2011;11:26–29.
  • Beauvais A, Bozza S, Kniemeyer O, et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLOS patho. 2013;9:e1003716.10.1371/journal.ppat.1003716
  • He X, Li S, Kaminskyj SGW. Characterization of Aspergillus nidulans α-glucan synthesis: roles for two synthases and two amylases. Mol. Microbiol. 2014;91:579–595.10.1111/mmi.2014.91.issue-3
  • Beauvais A, Drake R, Ng K, et al. Characterization of the 1,3-β-glucan synthase of Aspergillus fumigatus. J. Gen. Microbiol. 1993;139:3071–3078.10.1099/00221287-139-12-3071
  • Beauvais A, Bruneau JM, Mol PC, et al. Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 2000;83:2273–2279.
  • Firon A, Beauvais A, Latgé JP, et al. Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus. Impact of genomic rearrangements associated with electroporation of DNA. Genetics. 2002;161:1077–1087.
  • Douglas CM. Fungal β(1,3)-d-glucan synthesis. Med. Mycol. 2001;39(Suppl 1):55–66.10.1080/mmy.39.1.55.66
  • Rogg LE, Fortwendel JR, Juvvadi PR, et al. Regulation of expression, activity and localization of fungal chitin synthases. Med. Mycol. 2012;50:2–17.10.3109/13693786.2011.577104
  • Chigira Y, Abe K, Gomi K, et al. chsZ, a gene for a novel class of chitin synthase from Aspergillus oryzae. Curr. Genet. 2002;41:261–267.10.1007/s00294-002-0305-z
  • Choquer M, Boccara M, Gonçalves IR, et al. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur. J. Biochem. 2004;271:2153–2164.10.1111/j.1432-1033.2004.04135.x
  • Takeshita N, Wernet V, Tsuizaki M, et al. Transportation of Aspergillus nidulans class III and V chitin synthases to the hyphal tips depends on conventional kinesin. PLoS ONE. 2015;10:e0125937.10.1371/journal.pone.0125937
  • Horiuchi H. Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med. Mycol. 2009;47(s1):S47–S52.10.1080/13693780802213332
  • Borgia PT, Iartchouk N, Riggle PJ, et al. The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet. Biol. 1996;20:193–203.10.1006/fgbi.1996.0035
  • Yanai K, Kojima N, Takaya N, et al. Isolation and characterization of two chitin synthase genes from Aspergillus nidulans. Biosci. Biotechnol. Biochem. 1994;58:1828–1835.10.1271/bbb.58.1828
  • Fukuda K, Yamada K, Deoka K, et al. Class III chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. Eukaryot. Cell. 2009;8:945–956.10.1128/EC.00326-08
  • Mellado E, Specht CA, Robbins PW, et al. Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus. FEMS Microbiol. Lett. 1996;143:69–76.10.1111/fml.1996.143.issue-1
  • Mellado E, Dubreucq G, Mol P, et al. Cell wall biogenesis in a double chitin synthase mutant (chsG-/chsE-) of Aspergillus fumigatus. Fungal Genet. Biol. 2003;38:98–109.10.1016/S1087-1845(02)00516-9
  • Takeshita N, Yamashita S, Ohta A, et al. Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol. Mocrobiol. 2006;59:1380–1394.10.1111/j.1365-2958.2006.05030.x
  • Horiuchi H, Fujiwara M, Yamashita S, et al. Proliferation of intrahyphal hyphae caused bydisruption of csmA which encodes a class V-chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol. 1999;181:3721–3729.
  • Aufauvre-Brown A, Mellado E, Gow NAR, et al. Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet. Biol. 1997;21:141–152.10.1006/fgbi.1997.0959
  • Kim J-E, Lee H-J, Lee J, et al. Gibberella zeae chitin synthase genes, GzCHS5 and GzCHS7, are required for hyphal growth, perithecia formation, and pathogenicity. Curr. Genet. 2009;55:449–459.10.1007/s00294-009-0258-6
  • Kong L-A, Yang J, Li G-T, et al. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Patho. 2012;8:e1002526.10.1371/journal.ppat.1002526
  • Larson TM, Kendra DF, Busman M, et al. Fusarium verticillioides chitin synthases CHS5 and CHS7 are required for normal growth and pathogenicity. Curr. Genet. 2011;57:177–189.10.1007/s00294-011-0334-6
  • Liu HB, Kauffman S, Becker JM, et al. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot. Cell. 2011;3:40–51.
  • Mellado E, Aufauvre-Brown A, Gow NAR, et al. The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol. Microbiol. 1996;20:667–679.10.1046/j.1365-2958.1996.5571084.x
  • Pareja-Jaime Y, Martín-Urdíroz M, Roncero MI, et al. Chitin synthase-deficient mutant of Fusarium oxysporum elicits tomato plant defence response and protects against wild-type infection. Mol. Plant Pathol. 2010;11:479–493.10.1111/j.1364-3703.2010.00624.x
  • Treitschke S, Doehlemann G, Schuster M, et al. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell. 2010;22:2476–2494.10.1105/tpc.110.075028
  • Werner S, Sugui JA, Steinberg G, et al. A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Mol. Plant-Microbe Interact. 2007;20:1555–1567.10.1094/MPMI-20-12-1555
  • Soulie MC, Perino C, Piffeteau A, et al. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cell Microbiol. 2006;8:1310–1321.10.1111/cmi.2006.8.issue-8
  • Sheng W, Yamashita S, Ohta A, et al. Functional differentiation of chitin synthases in Yarrowia lipolytica. Biosci. Biotechnol. Biochem. 2013;77:1275–1281.10.1271/bbb.130111
  • Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Med. Mycol. 2014;52:2–9.
  • Gravelat FN, Beauvais A, Liu H, et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS patho. 2013;9:e1003575.10.1371/journal.ppat.1003575
  • Bamford NC, Snarr BD, Gravelat FN, et al. Sph3 is glycoside hydrolase required for biosynthesis of galactosaminogalactan in Aspergillus fumigatus. J Biol. Chem. 2015;290:27438–27450.
  • Heinisch JJ, Lorberg A, Schmitz HP, et al. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol. Microbiol. 1999;32:671–680.10.1046/j.1365-2958.1999.01375.x
  • Verna J, Lodder A, Lee K, et al. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1997;94:13804–13809.10.1073/pnas.94.25.13804
  • Lodder AL, Lee TK, Ballester R. Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics. 1999;152:1487–1499.
  • Rodicio R, Heinisch JJ. Together we are strong—cell wall integrity sensors in yeasts. Yeast. 2010;27:531–540.10.1002/yea.1785
  • Ketela T, Green R, Bussey H. Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J. Bacteriol. 1999;181:3330–3340.
  • Rajavel M, Philip B, Buehrer BM, et al. Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol. Cell Biol. 1999;19:3969–3976.10.1128/MCB.19.6.3969
  • Levin DE, Fields FO, Kunisawa R, et al. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Eukaryot. Cell. 1990;62:213–224.10.1016/0092-8674(90)90360-Q
  • Philip B, Levin DE. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell Biol. 2001;21:271–280.10.1128/MCB.21.1.271-280.2001
  • Schmidt A, Bickle M, Beck T, et al. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell. 1997;88:531–542.10.1016/S0092-8674(00)81893-0
  • Kamada Y, Qadota H, Python CP, et al. Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem. 1996;271:9193–9196.
  • Lee KS, Levin DE. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell Biol. 1992;12:172–182.10.1128/MCB.12.1.172
  • Irie K, Takase M, Lee KS, et al. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell Biol. 1993;13:3076–3083.
  • Martin H, Arroyo J, Sanchez M, et al. Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C. Mol. Gen. Genet. 1993;241:177–184.10.1007/BF00280215
  • Jung US, Levin DE. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 1999;34:1049–1057.10.1046/j.1365-2958.1999.01667.x
  • Goto M, Harada Y, Oka T, et al. Protein O-mannosyltransferases B and C support hyphal development and differentiation in Aspergillus nidulans. Eukaryot. Cell. 2009;8:1465–1474.10.1128/EC.00371-08
  • Futagami T, Seto K, Kajiwara Y, et al. The putative stress sensor protein MtlA is required for conidia formation, cell wall stress tolerance, and cell wall integrity in Aspergillus nidulans. Biosci. Biothecnol. Tol. Biochem. 2014;78:326–335.10.1080/09168451.2014.878218
  • Dichtl K, Helmschrott C, Dirr F, et al. Deciphering cell wall integrity signalling in Aspergillus fumigatus: identification and functional characterization of cell wall stress sensors and relevant Rho GTPases. Mol. Microbiol. 2012;83:506–519.10.1111/mmi.2012.83.issue-3
  • Kriangkripipat T, Momany M. Aspergillus nidulans protein O-mannosyltransferases play roles in cell wall integrity and developmental patterning. Eukaryot. Cell. 2009;8:1475–1485.10.1128/EC.00040-09
  • Oka T, Hamaguchi T, Sameshima Y, et al. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology. 2004;150:1973–1982.10.1099/mic.0.27005-0
  • GOTO M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci. Biotechnol. Biochem. 2007;71:1415–1427.10.1271/bbb.70080
  • Franchi L, Fulci V, Macino G. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol. Microbiol. 2005;56:334–345.10.1111/j.1365-2958.2005.04545.x
  • Herrmann M, Sprote P, Brakhage AA. Protein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production. Appl. Environ. Microbiol. 2006;72:2957–2970.10.1128/AEM.72.4.2957-2970.2006
  • Ichinomiya M, Uchida H, Koshi Y, et al. A protein kinase C-encoding gene, pkcA , is essential to the viability of the filamentous fungus Aspergillus nidulans. Biosci. Biotechnol. Biochem. 2007;71:2787–2799.10.1271/bbb.70409
  • Ronen R, Sharon H, Levdansky E, et al. The Aspergillus nidulans pkcA gene is involved in polarized growth, morphogenesis and maintenance of cell wall integrity. Curr. Genet. 2007;51:321–329.10.1007/s00294-007-0129-y
  • Teepe AG, Loprete DM, He Z, et al. The protein kinase C orthologue PkcA plays a role in cell wall integrity and polarized growth in Aspergillus nidulans. Fungal Genet. Biol. 2007;44:554–562.10.1016/j.fgb.2006.10.001
  • Katayama T, Uchida H, Ohta A, et al. Involvement of protein kinase C in the suppression of apoptosis and in polarity establishment in Aspergillus nidulans under conditions of heat stress. PLoS ONE. 2012;7:e50503.10.1371/journal.pone.0050503
  • Katayama T, Ohta A, Horiuchi H. Protein kinase C regulates the expression of cell wall-related genes in RlmA-dependent and independent manners in Aspergillus nidulans. Biosci. Biothechnol. Biochem. 2015;79:321–330.10.1080/09168451.2014.973365
  • Bussink HJ, Osmani SA. A mitogen-activated protein kinase (MPKA) is involved in polarized growth in the filamentous fungus, Aspergillus nidulans. FEMS Microbiol. Lett. 1999;173:117–125.10.1111/fml.1999.173.issue-1
  • Jain R, Valiante V, Remme N, et al. The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus. Mol. Microbiol. 2011;82:39–53.10.1111/mmi.2011.82.issue-1
  • Yoshimi A, Fujioka T, Mizutani O, et al. Mitogen-activated protein kinases MpkA and MpkB independently affect micafungin sensitivity in Aspergillus nidulans. Biosci. Biothechnol. Biochem. 2015;79:836–844.10.1080/09168451.2014.998619
  • Ram AF, Arentshorst M, Damveld RA, et al. The cell wall stress response in Aspergillus niger involves increased expression of the glutamine : fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Microbiology. 2004;150:3315–3326.10.1099/mic.0.27249-0
  • Mizutani O, Nojima A, Yamamoto M, et al. Disordered cell integrity signaling caused by disruption of the kexB gene in Aspergillus oryzae. Eukaryot. Cell. 2004;3:1036–1048.10.1128/EC.3.4.1036-1048.2004
  • Fuller RS, Brake AJ, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. Natl. Acad. Sci. USA. 1989;86:1434–1438.10.1073/pnas.86.5.1434
  • Redding K, Holcomb C, Fuller RS. Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J. Cell Biol. 1991;113:527–538.10.1083/jcb.113.3.527

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.