3,256
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Coordinated process of polarized growth in filamentous fungi

Pages 1693-1699 | Received 22 Dec 2015, Accepted 06 Apr 2016, Published online: 28 Apr 2016

References

  • Wu CF, Lew DJ. Beyond symmetry-breaking: competition and negative feedback in GTPase regulation. Trends Cell Biol. 2013;23:476–483.10.1016/j.tcb.2013.05.003
  • Goehring NW, Grill SW. Cell polarity: mechanochemical patterning. Trends Cell Biol. 2013;23:72–80.10.1016/j.tcb.2012.10.009
  • Riquelme M, Yarden O, Bartnicki-Garcia S, et al. Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol. 2011;115:446–474.10.1016/j.funbio.2011.02.008
  • Steinberg G. Motors in fungal morphogenesis: cooperation versus competition. Curr. Opin. Microbiol. 2011;14: 660–667.
  • Fischer R, Zekert N, Takeshita N. Polarized growth in fungi–interplay between the cytoskeleton, positional markers and membrane domains. Mol. Microbiol. 2008;68:813–826.10.1111/j.1365-2958.2008.06193.x
  • Garcia-Vidal C, Viasus D, Carratalà J. Pathogenesis of invasive fungal infections. Curr. Opin. Infect. Dis. 2013;26:270–276.10.1097/QCO.0b013e32835fb920
  • Punt PJ, van Biezen N, Conesa A, et al. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002;20:200–206.10.1016/S0167-7799(02)01933-9
  • Kobayashi T, Abe K, Asai K, et al. Genomics of Aspergillus oryzae. Biosci. Biotech. Biochem. 2007;71:646–670.10.1271/bbb.60550
  • Chang F, Peter M. Yeasts make their mark. Nature Cell Biol. 2003;5:294–299.10.1038/ncb0403-294
  • Harris SD, Momany M. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet. Biol. 2004;41:391–400.10.1016/j.fgb.2003.11.007
  • Takeshita N, Manck R, Grün N, et al. Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr. Opin. Microbiol. 2014;20:34–41.10.1016/j.mib.2014.04.005
  • Berepiki A, Lichius A, Read ND. Actin organization and dynamics in filamentous fungi. Nat. Rev. Microbiol. 2011;9:876–887.10.1038/nrmicro2666
  • Torralba S, Raudaskoski M, Pedregosa AM, et al. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology. 1998;144(Pt 1):45–53.10.1099/00221287-144-1-45
  • Taheri-Talesh N, Xiong Y, Oakley BR. The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS ONE. 2012;7:e31218.10.1371/journal.pone.0031218
  • Delgado-Álvarez DL, Callejas-Negrete OA, Gómez N, et al. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet. Biol. 2010;47:573–586.10.1016/j.fgb.2010.03.004
  • Araujo-Bazán L, Peñalva MA, Espeso EA. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol. Microbiol. 2008;67:891–905.10.1111/mmi.2008.67.issue-4
  • Peñalva MA. Endocytosis in filamentous fungi: Cinderella gets her reward. Curr. Opin. Microbiol. 2010;13:684–692.10.1016/j.mib.2010.09.005
  • Shaw BD, Chung DW, Wang CL, et al. A role for endocytic recycling in hyphal growth. Fungal Biol. 2011;115:541–546.10.1016/j.funbio.2011.02.010
  • Brent Heath I, Bonham M, Akram A, et al. The interrelationships of actin and hyphal tip growth in the ascomycete Geotrichum candidum. Fungal Genet. Biol. 2003;38:85–97.10.1016/S1087-1845(02)00511-X
  • Taheri-Talesh N, Horio T, Araujo-Bazan L, et al. The tip growth apparatus of Aspergillus nidulans. Mol. Biol. Cell. 2008;19:1439–1449.10.1091/mbc.E07-05-0464
  • Berepiki A, Lichius A, Shoji JY, et al. F-actin dynamics in Neurospora crassa. Eukaryot. Cell. 2010;9:547–557.10.1128/EC.00253-09
  • Bergs A, Ishitsuka Y, Evangelinos M, et al. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans. Front Microbiol. in press.
  • Sudbery P. Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus. Fungal Genet Biol. 2011;48:849–857.10.1016/j.fgb.2011.02.004
  • Grove SN, Bracker CE. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J. Bacteriol. 1970;104:989–1009.
  • Harris SD, Read ND, Roberson RW, et al. Polarisome meets spitzenkorper: microscopy, genetics, and genomics converge. Eukaryot. Cell. 2005;4:225–229.10.1128/EC.4.2.225-229.2005
  • Riquelme M, Reynaga-Peña CG, Gierz G, et al. What determines growth direction in fungal hyphae? Fungal Genet. Biol. 1998;24:101–109.10.1006/fgbi.1998.1074
  • Bartnicki-Garcia S, Bartnicki DD, Gierz G, et al. Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp. Mycol. 1995;19:153–159.10.1006/emyc.1995.1017
  • Egan MJ, Tan K, Reck-Peterson SL. Lis1 is an initiation factor for dynein-driven organelle transport. J. Cell Biol. 2012;197:971–982.10.1083/jcb.201112101
  • Horio T, Oakley BR. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell. 2005;16:918–926.
  • Xiang X, Fischer R. Nuclear migration and positioning in filamentous fungi. Fungal Genet. Biol. 2004;41:411–419.10.1016/j.fgb.2003.11.010
  • Oakley BR, Oakley CE, Yoon Y, et al. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell. 1990;61:1289–1301.10.1016/0092-8674(90)90693-9
  • Oakley CE, Oakley BR. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989;338:662–664.10.1038/338662a0
  • Veith D, Scherr N, Efimov VP, et al. Role of the spindle-pole-body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. J. Cell Sci. 2005;118:3705–3716.10.1242/jcs.02501
  • Xiong Y, Oakley BR. In vivo analysis of the functions of gamma-tubulin-complex proteins. J. Cell Sci. 2009;122:4218–4227.10.1242/jcs.059196
  • Zekert N, Fischer R. The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol. Biol. Cell. 2009;20:673–684.
  • Konzack S, Rischitor PE, Enke C, et al. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol. Biol. Cell. 2005;16:497–506.
  • Schoch CL, Aist JR, Yoder OC, et al. A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genet. Biol. 2003;39:1–15.10.1016/S1087-1845(03)00022-7
  • Egan MJ, McClintock MA, Reck-Peterson SL. Microtubule-based transport in filamentous fungi. Curr. Opin. Microbiol. 2012;15:637–645.10.1016/j.mib.2012.10.003
  • Seidel C, Moreno-Velasquez SD, Riquelme M, et al. Neurospora crassa NKIN2, a kinesin-3 motor, transports early endosomes and is required for polarized growth. Eukaryot. Cell. 2013;12:1020–1032.10.1128/EC.00081-13
  • Higuchi Y, Ashwin P, Roger Y, et al. Early endosome motility spatially organizes polysome distribution. J. Cell Biol. 2014;204:343–357.10.1083/jcb.201307164
  • Seiler S, Nargang FE, Steinberg G, et al. Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J. 1997;16:3025–3034.10.1093/emboj/16.11.3025
  • Seiler S, Plamann M, Schliwa M. Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr. Biol. 1999;9:779–785.10.1016/S0960-9822(99)80360-1
  • Requena N, Alberti-Segui C, Winzenburg E, et al. Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Mol. Microbiol. 2001;42:121–132.
  • Lehmler C, Steinberg G, Snetselaar KM, et al. Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J. 1997;16:3464–3473.10.1093/emboj/16.12.3464
  • Schuster M, Treitschke S, Kilaru S, et al. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J. 2012;31: 214–227.
  • Takeshita N, Wernet V, Tsuizaki M, et al. Transportation of Aspergillus nidulans class III and V chitin synthases to the hyphal tips depends on conventional kinesin. PLoS ONE. 2015;10:e0125937.10.1371/journal.pone.0125937
  • Markina-Iñarrairaegui A, Pantazopoulou A, Espeso EA, et al. The Aspergillus nidulans peripheral ER: disorganization by ER stress and persistence during mitosis. PLoS ONE. 2013;8:e67154.10.1371/journal.pone.0067154
  • Pinar M, Pantazopoulou A, Arst HN Jr, et al. Acute inactivation of the Aspergillus nidulans Golgi membrane fusion machinery: correlation of apical extension arrest and tip swelling with cisternal disorganization. Mol. Microbiol. 2013;89:228–248.10.1111/mmi.12280
  • Zhang J, Tan K, Wu X, et al. Aspergillus myosin-V supports polarized growth in the absence of microtubule-based transport. PLoS ONE. 2011;6:e28575.10.1371/journal.pone.0028575
  • Pantazopoulou A, Pinar M, Xiang X, et al. Maturation of late Golgi cisternae into RabERAB11 exocytic post-Golgi carriers visualized in vivo. Mol. Biol. Cell. 2014;25:2428–2443.10.1091/mbc.E14-02-0710
  • Etienne-Manneville S. Cdc42–the centre of polarity. J. Cell Sci. 2004;117:1291–1300.10.1242/jcs.01115
  • Johnson JM, Jin M, Lew DJ. Symmetry breaking and the establishment of cell polarity in budding yeast. Curr. Opin. Genet. Dev. 2011;21:740–746.10.1016/j.gde.2011.09.007
  • Wedlich-Soldner R, Altschuler S, Wu L, et al. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science. 2003;299:1231–1235.10.1126/science.1080944
  • Layton AT, Savage NS, Howell AS, et al. Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr. Biol. 2011;21:184–194.10.1016/j.cub.2011.01.012
  • Savage NS, Layton AT, Lew DJ. Mechanistic mathematical model of polarity in yeast. Mol. Biol. Cell. 2012;23:1998–2013.10.1091/mbc.E11-10-0837
  • Dyer JM, Savage NS, Jin M, et al. Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr. Biol. 2013;23:32–41.10.1016/j.cub.2012.11.014
  • Virag A, Lee MP, Si H, et al. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol. 2007;66:1579–1596.
  • Takeshita N, Higashitsuji Y, Konzack S, et al. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol. Biol. Cell. 2008;19:339–351.10.1091/mbc.E07-06-0523
  • Takeshita N, Fischer R. On the role of microtubules, cell end markers, and septal microtubule organizing centres on site selection for polar growth in Aspergillus nidulans. Fungal Biol. 2011;115:506–517.10.1016/j.funbio.2011.02.009
  • Higashitsuji Y, Herrero S, Takeshita N, et al. The cell end marker protein TeaC is involved in growth directionality and septation in Aspergillus nidulans. Eukaryot. Cell. 2009;8:957–967.10.1128/EC.00251-08
  • Takeshita N, Mania D, Herrero S, et al. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J. Cell Sci. 2013;126:5400–5411.10.1242/jcs.129841
  • Marco E, Wedlich-Soldner R, Li R, et al. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell. 2007;129:411–422.10.1016/j.cell.2007.02.043
  • Ishitsuka Y, Savage N, Li Y, et al. Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Science Adv. 2015;1:e1500947.10.1126/sciadv.1500947
  • Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–1645.10.1126/science.1127344
  • Sahl SJ, Moerner WE. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol. 2013;23:778–787.10.1016/j.sbi.2013.07.010
  • Riquelme M, Bredeweg EL, Callejas-Negrete O, et al. The Neurospora crassa exocyst complex tethers Spitzenkorper vesicles to the apical plasma membrane during polarized growth. Mol. Biol. Cell. 2014;25:1312–1326.10.1091/mbc.E13-06-0299
  • Lopez-Franco R, Bartnicki-Garcia S, Bracker CE. Pulsed growth of fungal hyphal tips. Proc. Natl. Acad. Sci. 1994;91:12228–12232.10.1073/pnas.91.25.12228
  • Wollman R, Meyer T. Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion. Nat. Cell Biol. 2012;14:1261–1269.10.1038/ncb2614
  • Das M, Drake T, Wiley DJ, et al. Oscillatory dynamics of Cdc42 GTPase in the control of polarized growth. Science. 2012;337:239–243.10.1126/science.1218377
  • Monshausen GB, Messerli MA, Gilroy S. Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiol. 2008;147:1690–1698.10.1104/pp.108.123638
  • Holdaway-Clarke TL, Feijo JA, Hackett GR, et al. Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell. 1997;9:1999–2010.10.1105/tpc.9.11.1999
  • Janmey PA. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol. 1994;56:169–191.10.1146/annurev.ph.56.030194.001125
  • Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 2005;15:266–274.10.1016/j.conb.2005.05.006
  • Kim HS, Czymmek KJ, Patel A, et al. Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca2+ signatures associated with polarized growth, development, and pathogenesis. Fungal GenetBiol. 2012;49:589–601.10.1016/j.fgb.2012.05.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.