727
Views
3
CrossRef citations to date
0
Altmetric
Articles

Analysis of de novo sequencing and transcriptome assembly and lignocellulolytic enzymes gene expression of Coriolopsis gallica HTCFootnote

, , , , , & show all
Pages 460-468 | Received 29 Oct 2015, Accepted 25 Feb 2016, Published online: 23 Nov 2016

References

  • Yao Y, Sakamoto T, Honda Y, et al. The white-rot fungus pleurotus ostreatus transformant overproduced intracellular cAMP and laccase. Biosci. Biotechnol. Biochem. 2013;77:2309–2311.10.1271/bbb.130470
  • Kirk TK, Farrell RL. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 1987;41:465–501.
  • Misumi K, Sugiura T, Yamaguchi S, et al. Cloning and transcriptional analysis of the gene encoding 5-aminolevulinic acid synthase of the white-rot fungus Phanerochaete sordida YK-624. Biosci. Biotechnol. Biochem. 2011;75:178–180.10.1271/bbb.100674
  • Calvo AM, Copa-Patino JL, Alonso O, et al. Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica , an efficient decolorizer of alkaline effluents. Arch. Microbiol. 1998;171:31–36.10.1007/s002030050674
  • Sun X, Zhang R, Zhang Y. Production of lignocellulolytic enzymes by Trametes gallica and detection of polysaccharide hydrolase and laccase activities in polyacrylamide gels. J. Basic Microbiol. 2004;44:220–231.10.1002/(ISSN)1521-4028
  • Carbajo JM, Junca H, Terrón MC, et al. Tannic acid induces transcription of laccase gene cglcc1 in the white-rot fungus Coriolopsis gallica. Can. J. Microbiol. 2002;48:1041–1047.10.1139/w02-107
  • Díaz R, Saparrat MC, Jurado M, et al. Biochemical and molecular characterization of Coriolopsis rigida laccases involved in transformation of the solid waste from olive oil production. Appl. Microbiol. Biotechnol. 2010;88:133–142.10.1007/s00253-010-2723-z
  • Surget-Groba Y, Montoya-Burgos JI. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res. 2010;20:1432–1440.10.1101/gr.103846.109
  • Wang L, Li P, Brutnell TP. Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics. 2010;9:118–128.10.1093/bfgp/elp057
  • Luca F, Hudson RR, Witonsky DB, et al. A reduced representation approach to population genetic analyses and applications to human evolution. Genome Res. 2011;21:1087–1098.10.1101/gr.119792.110
  • Smith SA, Wilson NG, Goetz FE, et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature. 2011;480:364–367.10.1038/nature10526
  • Haas BJ, Zody MC. Advancing RNA-Seq analysis. Nat. Biotechnol. 2010;28:421–423.10.1038/nbt0510-421
  • Zhang W, Chen J, Yang Y, et al. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies. PLoS ONE. 2011;6:e17915.10.1371/journal.pone.0017915
  • Lin Y, Li J, Shen H, et al. Comparative studies of de novo assembly tools for next-generation sequencing technologies. Bioinformatics. 2011;27:2031–2037.10.1093/bioinformatics/btr319
  • Schafleitner R, Tincopa L, Palomino O, et al. A sweet potato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genomics. 2010;11:2–10.10.1186/1471-2164-11-604
  • Birol I, Jackman SD, Nielsen CB, et al. De novo transcriptome assembly with ABySS. Bioinformatics. 2009;25:2872–2877.10.1093/bioinformatics/btp367
  • Shi CY, Yang H, Wei CL, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics. 2011;12:2–14.10.1186/1471-2164-12-131
  • Martin J, Bruno VM, Fang Z, et al. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics. 2010;11:2–8.10.1186/1471-2164-11-663
  • Kumar S, Blaxter ML. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics. 2010;11:2–12.10.1186/1471-2164-11-571
  • Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652.10.1038/nbt.1883
  • Schulz MH, Zerbino DR, Vingron M, et al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086–1092.
  • Hernandez D, François P, Farinelli L, et al. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 2008;18:802–809.10.1101/gr.072033.107
  • Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829.10.1101/gr.074492.107
  • Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20:265–272.10.1101/gr.097261.109
  • Tao X, Gu YH, Wang HY, et al. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS ONE. 2012;7:e36234.10.1371/journal.pone.0036234
  • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25-1–R25-10.10.1186/gb-2009-10-3-r25
  • Goecks J, Nekrutenko A, Taylor J, et al. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:2–13.10.1186/gb-2010-11-8-r86
  • Blankenberg D, Kuster GV, Coraor N, et al. A Web‐Based Genome Analysis Tool for Experimentalists. Curr. Protoc. Mol. Biol. 2010;19:1–33.
  • Conesa A, Götz S, García-Gómez JM, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676.10.1093/bioinformatics/bti610
  • Huang X, Madan A. CAP3: a DNA sequence assembly program. Genome Res. 1999;9:868–877.10.1101/gr.9.9.868
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–408.10.1006/meth.2001.1262
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57–63.10.1038/nrg2484
  • Garg R, Patel RK, Tyagi AK, et al. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 2011;18:53–63.10.1093/dnares/dsq028
  • Fiedler T, Hudder A, McKay S, et al. The transcriptome of the early life history stages of the California Sea Hare Aplysia californica. Comp. Biochem. Physiol. Part D Genomics Proteomics. 2010;5:165–170.10.1016/j.cbd.2010.03.003
  • Paszkiewicz K, Studholme DJ. De novo assembly of short sequence reads. Brief Bioinform. 2010;11:457–472.10.1111/fml.1985.29.issue-1-2
  • Zhang XG, He C, Zhang YZ. Cloning of laccase gene from a constructed cDNA library of Trametes gallica. Chin. J. Biochem. Mol. Biol. 2009;6:528–533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.