1,352
Views
26
CrossRef citations to date
0
Altmetric
Articles

Identification of natural rubber degradation gene in Rhizobacter gummiphilus NS21

, , , , , , & show all
Pages 614-620 | Received 26 Sep 2016, Accepted 07 Nov 2016, Published online: 23 Jan 2017

References

  • Backhaus RA. Rubber formation in plants – a minireview. Israel J Bot. 1985;34:283–293.
  • Bröker D, Dietz D, Arenskötter M, et al. The genomes of the non-clearing-zone-forming and natural-rubber-degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains. Appl Environ Microbiol. 2008;74:2288–2297.10.1128/AEM.02145-07
  • Ibrahim EM, Arenskötter M, Luftmann H, et al. Identification of Poly(cis-1,4-isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1. Appl Environ Microbiol. 2006;72:3375–3382.10.1128/AEM.72.5.3375-3382.2006
  • Imai S, Ichikawa K, Muramatsu Y, et al. Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene). Enzyme Microb Technol. 2011;49:526–531.10.1016/j.enzmictec.2011.05.014
  • Linos A, Reichelt R, Keller U, et al. A Gram-negative bacterium, identified as Pseudomonas aeruginosa AL98, is a potent degrader of natural rubber and synthetic cis-1,4-polyisoprene. FEMS Microbiol Lett. 2000;182:155–161.10.1111/fml.2000.182.issue-1
  • Jendrossek D, Reinhardt S. Sequence analysis of a gene product synthesized by Xanthomonas sp. during growth on natural rubber latex. FEMS Microbiol Lett. 2003;224:61–65.10.1016/S0378-1097(03)00424-5
  • Rose K, Tenberge KB, Steinbüchel A. Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation. Biomacromolecules. 2005;6:180–188.10.1021/bm0496110
  • Birke J, Rother W, Jendrossek D. Latex clearing protein (Lcp) of Streptomyces sp. strain K30 Is a b-type cytochrome and differs from rubber oxygenase A (RoxA) in its biophysical properties. Appl Environ Microbiol. 2015;81:3793–3799.10.1128/AEM.00275-15
  • Birke J, Jendrossek D. Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms. Appl Environ Microbiol. 2014;80:5012–5020.10.1128/AEM.01271-14
  • Bode HB, Kerkhoff K, Jendrossek D. Bacterial degradation of natural and synthetic rubber. Biomacromolecules. 2001;2:295–303.10.1021/bm005638h
  • Yikmis M, Arenskötter M, Rose K, et al. Secretion and transcriptional regulation of the latex-clearing protein, Lcp, by the rubber-degrading bacterium Streptomyces sp. strain K30. Appl Environ Microbiol. 2008;74:5373–5382.10.1128/AEM.01001-08
  • Hiessl S, Schuldes J, Thürmer A, et al. Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2. Appl Environ Microbiol. 2012;78:2874–2887.10.1128/AEM.07969-11
  • Luo Q, Hiessl S, Poehlein A, et al. Insights into the microbial degradation of rubber and gutta-percha by analysis of the complete genome of Nocardia nova SH22a. Appl Environ Microbiol. 2014;80:3895–3907.10.1128/AEM.00473-14
  • Hiessl S, Böse D, Oetermann S, et al. Latex clearing protein–an oxygenase cleaving poly(cis-1,4-isoprene) rubber at the cis double bonds. Appl Environ Microbiol. 2014;80:5231–5240.10.1128/AEM.01502-14
  • Braaz R, Fischer P, Jendrossek D. Novel type of heme-dependent oxygenase catalyzes oxidative cleavage of rubber (poly-cis-1,4-isoprene). Appl Environ Microbiol. 2004;70:7388–7395.10.1128/AEM.70.12.7388-7395.2004
  • Seidel J, Schmitt G, Hoffmann M, et al. Structure of the processive rubber oxygenase RoxA from Xanthomonas sp. Proc Natl Acad Sci USA. 2013;110:13833–13838.10.1073/pnas.1305560110
  • Braaz R, Armbruster W, Jendrossek D. Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of poly(cis-1,4-isoprene) by a dioxygenase mechanism. Appl Environ Microbiol. 2005;71:2473–2478.10.1128/AEM.71.5.2473-2478.2005
  • Schmitt G, Seiffert G, Kroneck PM, et al. Spectroscopic properties of rubber oxygenase RoxA from Xanthomonas sp., a new type of dihaem dioxygenase. Microbiology. 2010;156:2537–2548.10.1099/mic.0.038992-0
  • Birke J, Röther W, Schmitt G, et al. Functional identification of rubber oxygenase (RoxA) in soil and marine myxobacteria. Appl Environ Microbiol. 2013;79:6391–6399.10.1128/AEM.02194-13
  • Imai S, Yoshida R, Endo Y, et al. Rhizobacter gummiphilus sp. nov., a rubber-degrading bacterium isolated from the soil of a botanical garden in Japan. J Gen Appl Microbiol. 2013;59:199–205.10.2323/jgam.59.199
  • Kasai D, Kamimura N, Tani K, et al. Characterization of FerC, a MarR-type transcriptional regulator, involved in transcriptional regulation of the ferulate catabolic operon in Sphingobium sp. strain SYK-6. FEMS Microbiol Lett. 2012;332:68–75.10.1111/fml.2012.332.issue-1
  • Chaikumpollert O, Yamamoto Y, Suchiva K, et al. Protein-free natural rubber. Colloid Polym Sci. 2012;290:331–338.10.1007/s00396-011-2549-y
  • Masai E, Yamada A, Healy JM, et al. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 1995;61:2079–2085.
  • Kasai D, Fujinami T, Abe T, et al. Uncovering the protocatechuate 2,3-cleavage pathway genes. J Bacteriol. 2009;191:6758–6768.10.1128/JB.00840-09
  • Bendtsen JD, Nielsen H, Widdick D, et al. Prediction of twin-arginine signal peptides. BMC Bioinf. 2005;6:167.10.1186/1471-2105-6-167
  • Sharp JO, Sales CM, LeBlanc JC, et al. An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 2007;73:6930–6938.10.1128/AEM.01697-07
  • van der Geize R, Hessels GI, van Gerwen R, et al. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett. 2001;205:197–202.10.1016/S0378-1097(01)00464-5
  • Yen MR, Tseng YH, Nguyen EH, et al. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol. 2002;177:441–450.10.1007/s00203-002-0408-4
  • Lee PA, Tullman-Ercek D, Georgiou G. The bacterial twin-arginine translocation pathway. Annu Rev Microbiol. 2006;60:373–395.10.1146/annurev.micro.60.080805.142212
  • Birke J, Hambsch N, Schmitt G, et al. Phe317 is essential for rubber oxygenase RoxA activity. Appl Environ Microbiol. 2012;78:7876–7883.10.1128/AEM.02385-12
  • Bohannon DE, Sonenshein AL. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol. 1989;171:4718–4727.10.1128/jb.171.9.4718-4727.1989
  • MacLean AM, Anstey MI, Finan TM. Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti. J Bacteriol. 2008;190:1237–1246.10.1128/JB.01456-07
  • Omata T, Gohta S, Takahashi Y, et al. Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol. 2001;183:1891–1898.10.1128/JB.183.6.1891-1898.2001
  • Nakatsu CH, Hristova K, Hanada S, et al. Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol. 2006;56:983–989.10.1099/ijs.0.63524-0
  • Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–580.10.1016/S0022-2836(83)80284-8
  • Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet. 1984;196:413–420.10.1007/BF00436188
  • Short JM, Fernandez JM, Sorge JA, et al. λ ZAP: a bacteriophage λ expression vector with in vivo excision properties. Nucleic Acids Res. 1988;16:7583–7600.10.1093/nar/16.15.7583
  • Saito I, Stark GR. Charomids: cosmid vectors for efficient cloning and mapping of large or small restriction fragments. Proc Natl Acad Sci USA. 1986;83:8664–8668.10.1073/pnas.83.22.8664
  • Schäfer A, Tauch A, Jäger W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145:69–73.10.1016/0378-1119(94)90324-7
  • Blatny JM, Brautaset T, Winther-Larsen HC, et al. Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid. 1997;38:35–51.10.1006/plas.1997.1294

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.