916
Views
10
CrossRef citations to date
0
Altmetric
Award Reviews

Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentationFootnoteFootnote

&
Pages 1061-1068 | Received 30 Dec 2016, Accepted 04 Feb 2017, Published online: 28 Feb 2017

References

  • Akao T, Yashiro I, Hosoyama A, et al. Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res. 2011;18(6):423–434.10.1093/dnares/dsr029
  • Urbanczyk H, Noguchi C, Wu H, et al. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. J Biosci Bioeng. 2011;112(1):44–48.10.1016/j.jbiosc.2011.03.001
  • Wu H, Zheng X, Araki Y, et al. Global gene expression analysis of yeast cells during sake brewing. Appl Environ Microbiol. 2006;72(11):7353–7358.10.1128/AEM.01097-06
  • Watanabe D, Wu H, Noguchi C, et al. Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p. Appl Environ Microbiol. 2011;77(3):931–941.
  • Mortimer RK, Johnston JR. Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986;113(1):35–43.
  • Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science. 1996;274(5287):563–567.
  • Gray JV, Petsko GA, Johnston GC, et al. ‘Sleeping beauty’: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2004;68(2):187–206.10.1128/MMBR.68.2.187-206.2004
  • De Virgilio C. The essence of yeast quiescence. FEMS Microbiol Rev. 2012;36(2):306–339.10.1111/j.1574-6976.2011.00287.x
  • Noguchi C, Watanabe D, Zhou Y, et al. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol. 2012;78(2):385–392.10.1128/AEM.06341-11
  • Pedruzzi I, Dubouloz F, Cameroni E, et al. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell. 2003;12(6):1607–1613.10.1016/S1097-2765(03)00485-4
  • Cameroni E, Hulo N, Roosen J, et al. The novel yeast PAS kinase Rim15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle. 2004;3(4):462–468.
  • Imazu H, Sakurai H. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell. 2005;4(6):1050–1056.10.1128/EC.4.6.1050-1056.2005
  • Watanabe D, Araki Y, Zhou Y, et al. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol. 2012;78(11):4008–4016.10.1128/AEM.00165-12
  • Watanabe D, Takagi H, Shimoi H. Mechanism of high alcoholic fermentation ability of sake yeast. In: Takagi H, Kitagaki H, editors. Stress biology of yeasts and fungi. Tokyo: Springer; 2015. p. 59–75.10.1007/978-4-431-55248-2
  • Su SS, Mitchell AP. Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics. 1993;133(1):67–77.
  • Vidan S, Mitchell AP. Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Mol Cell Biol. 1997;17(5):2688–2697.10.1128/MCB.17.5.2688
  • Nakazawa N, Ashikari T, Goto N, et al. Partial restoration of sporulation defect in sake yeasts, Kyokai no. 7 and no. 9, by increased dosage of the IME1 gene. J Ferment Bioeng. 1992;73(4):265–270.10.1016/0922-338X(92)90180-3
  • Nakazawa N, Abe K, Koshika Y, et al. Cln3 blocks IME1 transcription and the Ime1-Ume6 interaction to cause the sporulation incompetence in a sake yeast, Kyokai no. 7. J Biosci Bioeng. 2010;110(1):1–7.10.1016/j.jbiosc.2010.01.006
  • Nakamura H, Kikuma T, Jin FJ, et al. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae. J Biosci Bioeng. 2016;121(4):365–371.10.1016/j.jbiosc.2015.08.011
  • Reinders A, Burckert N, Boller T, et al. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 1998;12(18):2943–2955.10.1101/gad.12.18.2943
  • Wanke V, Cameroni E, Uotila A, et al. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008;69(1):277–285.10.1111/mmi.2008.69.issue-1
  • Lee P, Kim MS, Paik SM, et al. Rim15-dependent activation of Hsf1 and Msn2/4 transcription factors by direct phosphorylation in Saccharomyces cerevisiae. FEBS Lett. 2013;587(22):3648–3655.10.1016/j.febslet.2013.10.004
  • Yu J, Fleming SL, Williams B, et al. Greatwall kinase. J Cell Biol. 2004;164(4):487–492.10.1083/jcb.200310059
  • Yu J, Zhao Y, Li Z, et al. Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts. Mol Cell. 2006;22(1):83–91.10.1016/j.molcel.2006.02.022
  • Mochida S, Maslen SL, Skehel M, et al. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science. 2010;330(6011):1670–1673.10.1126/science.1195689
  • Gharbi-Ayachi A, Labbe JC, Burgess A, et al. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science. 2010;330(6011):1673–1677.
  • Talarek N, Cameroni E, Jaquenoud M, et al. Initiation of the TORC1-regulated G0 program requires Igo1/2, which license specific mRNAs to evade degradation via the 5′-3′ mRNA decay pathway. Mol Cell. 2010;38(3):345–355.10.1016/j.molcel.2010.02.039
  • Bontron S, Jaquenoud M, Vaga S, et al. Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A. Cell Rep. 2013;3(1):16–22.10.1016/j.celrep.2012.11.025
  • Juanes MA, Khoueiry R, Kupka T, et al. Budding yeast Greatwall and endosulfines control activity and spatial regulation of PP2ACdc55 for timely mitotic progression. PLoS Genet. 2013;9(7):e1003575.10.1371/journal.pgen.1003575
  • Sarkar S, Dalgaard JZ, Millar JB, et al. The Rim15-endosulfine-PP2ACdc55 signalling module regulates entry into gametogenesis and quiescence via distinct mechanisms in budding yeast. PLoS Genet. 2014;10(6):e1004456.10.1371/journal.pgen.1004456
  • Moreno-Torres M, Jaquenoud M, De Virgilio C. TORC1 controls G1-S cell cycle transition in yeast via Mpk1 and the Greatwall kinase pathway. Nat Commun. 2015;6:8256.10.1038/ncomms9256
  • Watanabe D, Nogami S, Ohya Y, et al. Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast. J Biosci Bioeng. 2011;112(6):577–582.10.1016/j.jbiosc.2011.08.010
  • Watanabe D, Zhou Y, Hirata A, et al. Inhibitory role of Greatwall-like protein kinase Rim15p in alcoholic fermentation via upregulating the UDP-glucose synthesis pathway in Saccharomyces cerevisiae. Appl Environ Microbiol. 2016;82(1):340–351.10.1128/AEM.02977-15
  • Bisschops MM, Zwartjens P, Keuter SG, et al. To divide or not to divide: a key role of Rim15 in calorie-restricted yeast cultures. Biochim Biophys Acta. 2014;1843(5):1020–1030.10.1016/j.bbamcr.2014.01.026
  • François J, Parrou JL. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25(1):125–145.10.1111/j.1574-6976.2001.tb00574.x
  • Daran JM, Dallies N, Thines-Sempoux D, et al. Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem. 1995;233(2):520–530.10.1111/ejb.1995.233.issue-2
  • Daran JM, Bell W, François J. Physiological and morphological effects of genetic alterations leading to a reduced synthesis of UDP-glucose in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1997;153(1):89–96.10.1111/j.1574-6968.1997.tb10468.x
  • Garí E, Piedrafita L, Aldea M, et al. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast. 1997;13(9):837–848.10.1002/(ISSN)1097-0061
  • Granek JA, Magwene PM. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6(1):e1000823.10.1371/journal.pgen.1000823
  • Bergstrom A, Simpson JT, Salinas F, et al. A high-definition view of functional genetic variation from natural yeast genomes. Mol Biol Evol. 2014;31(4):872–888.10.1093/molbev/msu037
  • Kessi-Pérez EI, Araos S, García V, et al. RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res. 2016;16(3):fow021.
  • Della-Bianca BE, Basso TO, Stambuk BU, et al. What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol. 2013;97(3):979–991.10.1007/s00253-012-4631-x
  • Inai T, Watanabe D, Zhou Y, et al. Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2. J Biosci Bioeng. 2013;116(5):591–594.10.1016/j.jbiosc.2013.05.015
  • Libkind D, Hittinger CT, Valerio E, et al. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci USA. 2011;108(35):14539–14544.10.1073/pnas.1105430108
  • Oomuro M, Kato T, Zhou Y, et al. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer’s yeast. J Biosci Bioeng. 2016;122(5):577–582.10.1016/j.jbiosc.2016.04.007
  • Watanabe D, Kaneko A, Sugimoto Y, et al. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. J Biosci Bioeng. 2017;123(2):183–189. DOI:10.1016/j.jbiosc.2016.08.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.