1,540
Views
23
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Enhancements in sucrose biosynthesis capacity affect shoot branching in ArabidopsisFootnote

, , &
Pages 1470-1477 | Received 10 Feb 2017, Accepted 14 Apr 2017, Published online: 04 May 2017

References

  • McSteen P, Leyser O. Shoot branching. Annu Rev Plant Biol. 2005;56:353–374.10.1146/annurev.arplant.56.032604.144122
  • Guo D, Zhang J, Wang X, et al. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in arabidopsis. Plant Cell. 2015;27:3112–3127.10.1105/tpc.15.00829
  • Snowden KC, Napoli CA. A quantitative study of lateral branching in petunia. Funct Plant Biol. 2003;30:987–994.10.1071/FP03081
  • Cline MG. Apical dominance. Bot Rev. 1991;57:318–358.10.1007/BF02858771
  • Ljung K, Bhalerao RP, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 2001;28:465–474.
  • Blakeslee JJ, Peer WA, Murphy AS. Auxin transport. Curr Opin Plant Biol. 2005;8:494–500.10.1016/j.pbi.2005.07.014
  • Snow R. The young leaf as the inhibiting organ. New Phytol. 1929;28:345–358.10.1111/nph.1929.28.issue-5
  • Cline MG. Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Ann Bot. 1996;78:255–266.10.1006/anbo.1996.0119
  • Thimann KV, Skoog F. Studies on the growth hormone of plants. III. The inhibiting action of the growth substance on bud development. Proc Nat Acad Sci USA. 1993;19:714–716.
  • Sachs T, Thimann kV. The role of auxins and cytokinin in the release of buds from dominance. Am J Bot. 1967;54:136–144.10.2307/2440896
  • Miguel LC, Longnecker NE, Ma Q, et al. Branch development in Lupinus angustifolius L.I. Not all branches have the same potential growth rate. J Exp Bot. 1998;49:547–553.
  • Emery RJ. cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol. 1998;117:1515–1523.10.1104/pp.117.4.1515
  • Zhao Z, Andersen SU, Ljung K, et al. Hormonal control of the shoot stem-cell niche. Nature. 2010;465:1089–1092.10.1038/nature09126
  • Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455:195–200.10.1038/nature07272
  • Ongaro V, Leyser O. Hormonal control of shoot branching. J Exp Bot. 2007;59:67–74.10.1093/jxb/erm134
  • Ferguson BJ, Beveridge CA. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol. 2009;149:1929–1944.10.1104/pp.109.135475
  • McSteen P. Hormonal regulation of branching in grasses. Plant Physiol. 2009;149:46–55.10.1104/pp.108.129056
  • Beveridge CA, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol. 2010;13:34–39.10.1016/j.pbi.2009.10.003
  • Beveridge CA, Symons GM, Turnbull CGN. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2. Plant Physiol. 2000;123:689–698.10.1104/pp.123.2.689
  • Beveridge CA, Dun EA, Rameau C. Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol. 2009;151:985–990.10.1104/pp.109.143909
  • Beveridge CA. Axillary bud outgrowth: sending a message. Curr Opin Plant Biol. 2006;9:35–40.10.1016/j.pbi.2005.11.006
  • Brewer PB, Dun EA, Gui R, et al. Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol. 2015;168:1820–1829.10.1104/pp.15.00014
  • Tamoi M, Hiramatsu Y, Nedachi S, et al. Increase in the activity of fructose-1,6-bisphosphatase in cytosol affects sugar partitioning and increases the lateral shoots in tobacco plants at elevated CO2 levels. Photosynth Res. 2011;108:15–23.10.1007/s11120-011-9645-1
  • Miyagawa Y, Tamoi M, Shigeoka S. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nature Biotechnol. 2001;19:965–969.10.1038/nbt1001-965
  • Yabuta Y, Tamoi M, Yamamoto K, et al. Molecular design of photosynthesis-elevated chloroplasts for mass accumulation of a foreign protein. Plant Cell Physiol. 2008;49:375–385.10.1093/pcp/pcn014
  • Tamoi M, Ishikawa T, Takeda T, et al. Molecular characterization and resistance to hydrogen peroxide of two fructose-1,6-bisphosphatases from Synechococcus PCC 7942. Arch Biochem Biophys. 1996;334:27–36.10.1006/abbi.1996.0425
  • Daimon Y, Takabe K, Tasaka M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 2003;44:113–121.10.1093/pcp/pcg038
  • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743.10.1046/j.1365-313x.1998.00343.x
  • Arnon DI. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15.10.1104/pp.24.1.1
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.10.1016/0003-2697(76)90527-3
  • Galtier N, Foyer C, Murchie1 E, et al. Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase. J Exp Bot. 1995;46:1335–1344.10.1093/jxb/46.special_issue.1335
  • Hentrich M, Böttcher C, Düchting P, et al. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626–637.10.1111/tpj.2013.74.issue-4
  • Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Nat Acad Sci USA. 2011;108:18512–18517.10.1073/pnas.1108434108
  • Tao Y, Ferrer JL, Ljung K, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–176.10.1016/j.cell.2008.01.049
  • Teale WD, Paponov IA, Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006;7:847–859.10.1038/nrm2020
  • Habets MEJ, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol. 2014;203:362–377.10.1111/nph.12831
  • Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 2006;11:440–448.10.1016/j.tplants.2006.07.004
  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 2004;37:128–138.10.1046/j.1365-313X.2003.01945.x
  • Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol. 2015;66:161–186.10.1146/annurev-arplant-043014-114759
  • Booker J, Auldridge M, Wills S, et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol. 2004;14:1232–1238.10.1016/j.cub.2004.06.061
  • Zhang Y, van Dijk AD, Scaffidi A, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol. 2014;10:1028–1033.10.1038/nchembio.1660
  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell. 2007;19:458–472.10.1105/tpc.106.048934
  • Zrenner R, Krause KP, Apel P, et al. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J. 1996;9:671–681.10.1046/j.1365-313X.1996.9050671.x
  • Sharkey TD. Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev. 1985;51:53–105.10.1007/BF02861058
  • Abe S, Sado A, Tanaka K, et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Nat Acad Sci USA. 2014;111:18084–18089.10.1073/pnas.1410801111
  • Braun N, de Saint Germain A, Pillot JP, et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol. 2012;158:225–238.10.1104/pp.111.182725
  • Sairanen I, Novak O, Pencik A, et al. Soluble carbohydrates regulate auxin biosynthesis via pif proteins in arabidopsis. Plant Cell. 2012;24:4907–4916.10.1105/tpc.112.104794
  • Barbier F, Peron T, Lecerf M, et al. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. J Exp Bot. 2015;66:2569–2582.10.1093/jxb/erv047
  • Li CJ, Bangerth F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol Plant. 1999;106:415–420.10.1034/j.1399-3054.1999.106409.x
  • Brewer PB, Dun EA, Ferguson BJ, et al. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and arabidopsis. Plant Physiol. 2009;150:482–493.10.1104/pp.108.134783
  • Mason MG, Ross JJ, Babst BA, et al. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Nat Acad Sci USA. 2014;111:6092–6097.10.1073/pnas.1322045111
  • Kelly G, David-Schwartz R, Sade N, et al. The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar. Am Soc Plant Biol. 2012;159:47–51.
  • Franklin KA, Lee SH, Patel D, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Nat Acad Sci USA. 2011;108:20231–20235.10.1073/pnas.1110682108
  • Stewart JL, Maloof JN, Nemhauser JL. PIF genes mediate the effect of sucrose on seedling growth dynamics. PLoS ONE. 2011;6:e19894.10.1371/journal.pone.0019894
  • Jia W, Li B, Li S, et al. Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in arabidopsis. PLoS Biol. 2016;14:e1002550.10.1371/journal.pbio.1002550
  • Liu W, Kohlen W, Lillo A, et al. Strigolactone biosynthesis in medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell. 2011;23:3853–3865.10.1105/tpc.111.089771

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.