1,067
Views
4
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Differential expression of genes related to glucose metabolism in domesticated pigs and wild boar

, , , , , & show all
Pages 1478-1483 | Received 14 Feb 2017, Accepted 11 Apr 2017, Published online: 16 May 2017

References

  • Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett. 2012;4:1151–1157.
  • Hems R, Ross BD, Berry MN, et al. Krebs. Gluconeogenesis in the perfused rat liver. Biochem J. 1966;101:284–292.10.1042/bj1010284
  • Gerich JE, Meyer C, Woerle HJ, et al. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–391.10.2337/diacare.24.2.382
  • Lunt SY, Heiden MGV. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–464.10.1146/annurev-cellbio-092910-154237
  • Heiden MGV, Plas DR, Rathmell JC, et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001;21:5899–5912.10.1128/MCB.21.17.5899-5912.2001
  • Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16:635–649.10.1038/nrc.2016.77
  • Hwamee O, Madison C, Baker S, et al. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer’s disease. Brain. 2016;139:2275–2289.
  • Ligthart S, van Herpt TTW, Leening MJG, et al. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: a prospective cohort study. Lancet Diabetes Endo. 2016;4:44–51.10.1016/S2213-8587(15)00362-9
  • Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360–364.10.1038/nature11837
  • Bever K, Chenoweth M, Dunn A. Amino acid gluconeogenesis and glucose turnover in kelp bass (Paralabrax sp.). Am J Physiol. 1981;240:246–252.
  • Ge RL, Ratnakumar A, Arendt ML, et al. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol Genet Metab. 2012;106:244–247.10.1016/j.ymgme.2012.03.003
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.10.1016/S0092-8674(04)00045-5
  • Lynn FC. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrin Me. 2009;20:452–459.10.1016/j.tem.2009.05.007
  • Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Bio. 2012;13:239–250.10.1038/nrm3313
  • Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 2010;86:410–420.10.1093/cvr/cvq010
  • Ren L, Zhu B, Zhang Y, et al. The research of applying primer premier 5.0 to design PCR primer. J Jinzhou Med Coll. 2004; 25: 43–46.
  • Saeed AI, Sharov V, White J, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–378.
  • Kirkpatrick LA, Feeney BC. A simple guide to IBM SPSS: for version 20.0. Student Edition. Belmont (CA): Wadsworth, Cengage Learning; 2013.
  • Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Brit J Nutr. 2003;89:3–9.10.1079/BJN2002763
  • Chou SW, Chiu LL, Cho YM, et al. Effect of systemic hypoxia on GLUT4 protein expression in exercised rat heart. Jpn J Physiol. 2004;54:357–363.10.2170/jjphysiol.54.357
  • Sakagami H, Makino Y, Mizumoto K, et al. Loss of HIF-1α impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells. Am J Physiol-Endoc M. 2014; 306:E1065–E1076.
  • Allen A, Messier C. Plastic changes in the astrocyte GLUT1 glucose transporter and beta-tubulin microtubule protein following voluntary exercise in mice. Behav Brain Res. 2013;240:95–102.10.1016/j.bbr.2012.11.025
  • Hussey SE, McGee SL, Garnham A, et al. Exercise increases skeletal muscle GLUT4 gene expression in patients with type 2 diabetes. Diabetes Obes Metab. 2012;14:768–771.10.1111/dom.2012.14.issue-8
  • Kalhan S, Parimi P. Gluconeogenesis in the fetus and neonate. Semin Perinatol. 2000;24:94–106.10.1053/sp.2000.6360
  • Meyer C, Stumvoll M, Welle S, et al. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol-Endoc M. 2003;285:E819–E826.
  • Coggan AR, Swanson SC, Mendenhall LA, et al. Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men. Am J Physiol-Endoc M. 1995;268:E375–E383.
  • Wieghart M, Slepetis R, Elliot JM, et al. Glucose absorption and hepatic gluconeogenesis in dairy cows fed diets varying in forage content. J Nutr. 1986;116:839–850.
  • Hagopian K, Ramsey JJ, Weindruch R. Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice. Exp Gerontol. 2003;38:253–266.10.1016/S0531-5565(02)00203-6
  • Dhahbi JM, Mote PL, Wingo J, et al. Caloric restriction alters the feeding response of key metabolic enzyme genes. Mech Ageing Dev. 2001;122:1033–1048.10.1016/S0047-6374(01)00230-5
  • Jaime Ross M, Stefan Brené JÖ, Coppotelli G. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci USA. 2010;107:20087–20092.10.1073/pnas.1008189107
  • Zhu L, Li MZ, Li XW, et al. Distinct expression patterns of genes associated with muscle growth and adipose deposition in tibetan pigs: a possible adaptive mechanism for high altitude conditions. High Alt Med Biol. 2009;10:45–55.10.1089/ham.2008.1042
  • Hochachka PW, Stanley C, Merkt J. et al. Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis. Resp Physiol. 1983;52:303–31310.1016/0034-5687(83)90087-7
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.
  • Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells. Sci China Life Sci. 2009;23:1111–1116.
  • Liu AM, Xu Z, Shek FH, et al. miR-122 Targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS ONE. 2014;9:e86872–e86872.10.1371/journal.pone.0086872
  • Li HY, Zhang Y, Cai JH, et al. MicroRNA-451 inhibits growth of human colorectal carcinoma cells via downregulation of Pi3 k/Akt pathway. Asian Pac J Cancer P. 2013;14:3631–3634.10.7314/APJCP.2013.14.6.3631
  • Fang R, Xiao T, Fang Z, et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem. 2012;287:23227–23235.10.1074/jbc.M112.373084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.