1,332
Views
23
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1

, , , &
Pages 1908-1916 | Received 29 May 2017, Accepted 29 Jul 2017, Published online: 23 Aug 2017

References

  • Ghosh D, LeVault KR, Barnett AJ, et al. A reversible early oxidized redox state that precedes macromolecular ROS Damage in aging nontransgenic and 3xTg-AD mouse neurons. J Neurosci. 2012;32:5821–5832.10.1523/JNEUROSCI.6192-11.2012
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.10.1093/geronj/11.3.298
  • Finch CE, Beltrán-Sánchez H, Crimmins EM. Uneven futures of human lifespans: reckonings from Gompertz mortality rates, climate change, and air pollution. Gerontology. 2014;60:183–188.10.1159/000357672
  • Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005;592:119–137.10.1016/j.mrfmmm.2005.06.012
  • Katiki LM, Ferreira JF, Gonzalez JM, et al. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity. Vet Parasitol. 2013;192:218–227.10.1016/j.vetpar.2012.09.030
  • Alisi A, Pastore A, Ceccarelli S, et al. Emodin prevents intrahepatic fat accumulation, inflammation and redox status imbalance during diet-induced hepatosteatosis in rats. Int J Mol Sci. 2012;13:2276–2289.10.3390/ijms13022276
  • Dong X, Fu J, Yin X, et al. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016;30:1207–1218.10.1002/ptr.v30.8
  • Yen GC, Duh PD, Chuang DY. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2012;70:437–441.
  • Tian B, Hua Y. Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA. Food Chem. 2005;91:413–418.10.1016/j.foodchem.2004.06.018
  • Cui YT, Liu B, Xie J, et al. The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2014;38:74–79.10.1016/j.fsi.2014.02.018
  • Tzeng TF, Lu HJ, Liou SS, et al. Emodin protects against high-fat diet-induced obesity via regulation of AMP-activated protein kinase pathways in white adipose tissue. Plant Med. 2012;78:943–950.
  • Wang X, Zhang J, Lu L, et al. The longevity effect of echinacoside in Caenorhabditis elegans mediated through daf-16. Biosci Biotechnol Biochem. 2015;79:1676–1683.10.1080/09168451.2015.1046364
  • Lithgow GJ, Walker GA. Stress resistance as a determinate of C. elegans lifespan. Mech Ageing Dev. 2002;123:765–771.10.1016/S0047-6374(01)00422-5
  • Zhang J, Lu L, Zhou L. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans. Biochem Biophys Res Commun. 2015;468:843–849.10.1016/j.bbrc.2015.11.042
  • Tissenbaum HA. Using C. elegans for aging research. Invertebr Reprod Dev. 2015;59:59–63.10.1080/07924259.2014.940470
  • Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50:567–575.10.1016/j.freeradbiomed.2010.12.006
  • Altintas O, Park S, Lee SJ. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016;49:81–92.10.5483/BMBRep.2016.49.2.261
  • Tullet JM, Hertweck M, An JH, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132:1025–1038.10.1016/j.cell.2008.01.030
  • Wu JZ, Huang JH, Khanabdali R, et al. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans. Exp Gerontol. 2016;80:43–50.10.1016/j.exger.2016.04.008
  • Berdichevsky A, Guarente L. A stress response pathway involving sirtuins, forkheads and 14-3-3 proteins. Cell Cycle. 2006;5:2588–2591.10.4161/cc.5.22.3513
  • Murphy CT, Hu PJ. Insulin/insulin-like growth factor signaling in C. elegans. WormBook. 2013;1–43.
  • McKay JP, Raizen DM, Gottschalk A, et al. eat-2 and eat-18 are required for nicotinic neurotransmission in the caenorhabditis elegans pharynx. Genetics. 2004;166:161–169.10.1534/genetics.166.1.161
  • Harper JM, Salmon AB, Chang Y, et al. Stress resistance and aging: Influence of genes and nutrition. Mech Ageing Dev. 2006;127:687–694.10.1016/j.mad.2006.04.002
  • Ray A, Martinez BA, Berkowitz LA, et al, Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis. 2014;5:e984.10.1038/cddis.2013.513
  • Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radic Biol Med. 2012;52:539–555.10.1016/j.freeradbiomed.2011.10.445
  • Ogawa T, Kodera Y, Hirata D, et al. Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf. Sci Rep. 2016;6:13.10.1038/srep21611
  • Rathor L, Akhoon BA, Pandey S, et al, Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. Age (Dordr). 2015;37:113.
  • Lin K, Hsin H, Libina N, et al. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28:139–145.10.1038/88850
  • Bansal A, Kwon ES, Conte D Jr, et al. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longev Healthspan. 2014;3:5.10.1186/2046-2395-3-5
  • Henderson ST, Johnson TE. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol. 2001;11:1975–1980.10.1016/S0960-9822(01)00594-2
  • Havermann S, Humpf HU, Wätjen W. Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF-16. Fitoterapia. 2016;113:123–127.10.1016/j.fitote.2016.06.018
  • Seo HW, Cheon SM, Lee MH, et al. Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in Caenorhabditis elegans. Evid Based Complement Alternat Med. 2015;2015:524878.
  • Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277–283.10.1038/nature01789
  • Lee J, Kwon G, Park J, et al. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp Biol Med (Maywood), 2016;241:1757–1763.10.1177/1535370216650054
  • Wang X, Wang X, Li L, et al. Lifespan extension in Caenorhabditis elegans by DMSO is dependent on sir-2.1 and daf-16. Biochem Biophys Res Commun. 2010;400:613–618.10.1016/j.bbrc.2010.08.113
  • Mesquita A, Weinberger M, Silva A, et al. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA. 2010;107:15123–15128.10.1073/pnas.1004432107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.