1,098
Views
12
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum

, , , , , & ORCID Icon show all
Pages 2130-2138 | Received 03 Jul 2017, Accepted 07 Aug 2017, Published online: 13 Sep 2017

References

  • Choudhary C, Weinert BT, Nishida Y, et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15:536–550.10.1038/nrm3841
  • Hentchel KL, Escalante-Semerena JC. Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol Mol Biol Rev. 2015;79:321–346.10.1128/MMBR.00020-15
  • Menzies KJ, Zhang H, Katsyuba E, et al. Protein acetylation in metabolism — metabolites and cofactors. Nat Rev Endocrinol. 2015;12:43–60.10.1038/nrendo.2015.181
  • Yoshida M, Kudo N, Kosono S, et al. Chemical and structural biology of protein lysine deacetylases. Proc Jpn Acad Ser B. 2017;93:297–321.10.2183/pjab.93.019
  • Eggeling L, Bott M, editors. Handbook of Corynebacterium glutamicum. CRC Press; 2005.
  • Mizuno Y, Nagano-Shoji M, Kubo S, et al. Altered acetylation and succinylation profiles in Corynebacterium glutamicumin response to conditions inducing glutamate overproduction. MicrobiologyOpen. 2016;5:152–173.10.1002/mbo3.2016.5.issue-1
  • Nagano-Shoji M, Hamamoto Y, Mizuno Y, et al. Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum. Mol Microbiol. 2017;104:677–689.10.1111/mmi.2017.104.issue-4
  • Kawahara Y, Takahashi-Fuke K, Shimizu E, et al. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in brevibacterium lactofermentum. Biosci Biotechnol Biochem. 1997;61:1109–1112.10.1271/bbb.61.1109
  • Shimizu H, Tanaka H, Nakato A, et al. Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate productionby Corynebacterium glutamicum. Bioprocess Biosyst Eng. 2003;25:291–298.10.1007/s00449-002-0307-8
  • Shirai T, Nakato A, Izutani N, et al. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng. 2005;7:59–69.10.1016/j.ymben.2004.10.001
  • Niebisch A, Kabus A, Schultz C, et al. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem. 2006;281:12300–12307.10.1074/jbc.M512515200
  • Almawi AW, Matthews LA, Guarné A. FHA domains: phosphopeptide binding and beyond. Prog Biophys Mol Biol. 2017;127:105–110.10.1016/j.pbiomolbio.2016.12.003
  • Krawczyk S, Raasch K, Schultz C, et al. The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum. FEBS Lett. 2010;584:1463–1468.10.1016/j.febslet.2010.03.028
  • Raasch K, Bocola M, Labahn J, et al. Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: Mutants and a model. J Biotechnol. 2014;191:99–105.10.1016/j.jbiotec.2014.05.023
  • Barthe P, Roumestand C, Canova MJ, et al. Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 2009;17:568–578.10.1016/j.str.2009.02.012
  • Schultz C, Niebisch A, Schwaiger A, et al. Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol. 2009;74:724–741.10.1111/mmi.2009.74.issue-3
  • Schultz C, Niebisch A, Gebel L, et al. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol. 2007;76:691–700.10.1007/s00253-007-0933-9
  • Kim J, Fukuda H, Hirasawa T, et al. Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2010;86:911–920.10.1007/s00253-009-2360-6
  • Schafer A, Tauch A, Jager W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutumicum. Gene 1994;145:69–73.10.1016/0378-1119(94)90324-7
  • Shiio I, Ujigawa-Takeda K. Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium. Brevibacterium flavum. Agric Biol Chem. 1980;44:1897–1904.
  • Kosono S, Tamura M, Suzuki S, et al. Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source. PLoS ONE. 2015;10:e0131169.10.1371/journal.pone.0131169
  • Kim J, Hirasawa T, Saito M, et al. Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;91:143–151.10.1007/s00253-011-3275-6
  • Koul A, Choidas A, Tyagi AK, et al. Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology 2001;147:2307–2314.10.1099/00221287-147-8-2307
  • Wagner GR, Payne RM. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem. 2013;288:29036–29045.10.1074/jbc.M113.486753
  • Ventura M, Rieck B, Boldrin F, et al. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol Microbiol. 2013;90:356–366.
  • Nott TJ, Kelly G, Stach L, et al. An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci Signal. 2009;2:ra12.
  • Weinert BT, Schölz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013;4:842–851.10.1016/j.celrep.2013.07.024
  • Wagner GR, Hirschey MD. Nonenzymatic protein acylationas a carbon stress regulated by sirtuin deacylases. Mol Cell. 2014;54:5–16.10.1016/j.molcel.2014.03.027
  • Soufi B, Soares NC, Ravikumar V, et al. Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation. Curr Opin Microbiol. 2012;15:357–363.10.1016/j.mib.2012.05.003
  • van Noort V, Seebacher J, Bader S, et al. Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Mol Syst Biol. 2012;8:571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.