524
Views
1
CrossRef citations to date
0
Altmetric
Environmental Science

Neutralization of acidic drainage by Cryptococcus sp. T1 immobilized in alginate beads

, , , , , , & show all
Pages 2216-2224 | Received 17 Apr 2017, Accepted 19 Aug 2017, Published online: 15 Sep 2017

References

  • Gross S, Robbins EI. Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia. 2000;433:91–109.10.1023/A:1004014603333
  • Johnson DB. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol. 1998;27:307–317.10.1111/fem.1998.27.issue-4
  • Acidophiles Oren A. In: Encyclopedia of life sciences. Chichester: Wiley; 2010.
  • Liu Y, Tang H, Lin Z, et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv. 2015;33:1484–1492.10.1016/j.biotechadv.2015.06.001
  • Mollapour M, Piper P. Targeted gene deletion in Zygosaccharomyces bailii. Yeast. 2001;18:173–186.10.1002/(ISSN)1097-0061
  • Causton HC, Ren B, Koh SS, et al. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001;12:323–337.10.1091/mbc.12.2.323
  • Chen AK, Gelling C, Rogers PL, et al. Response of Saccharomyces cerevisiae to stress-free acidification. J Microbiol. 2009;47:1–8.10.1007/s12275-008-0167-2
  • Kawahata M, Masaki K, Fujii T, et al. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006;6:924–936.10.1111/fyr.2006.6.issue-6
  • Eraso P, Gancedo C. Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett. 1987;224:187–192.10.1016/0014-5793(87)80445-3
  • Nguyen VAT, Senoo K, Mishima T, et al. Multiple tolerance of Rhodotorula glutinis R-1 to acid, aluminum ion and manganese ion, and its unusual ability of neutralizing acidic medium. J Biosci Bioeng. 2001;92:366–371.
  • Shiomi N, Yasuda T, Inoue Y, et al. Characteristics of neutralization of acids by newly isolated fungal cells. J Biosci Bioeng. 2004;97:54–58.10.1016/S1389-1723(04)70165-6
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729.10.1093/molbev/mst197
  • Russo G, Libkind D, Sampaio JP, et al. Yeast diversity in the acidic Rio Agrio-Lake Caviahue volcanic environment (Patagonia, Argentina). FEMS Microbiol Ecol. 2008;65:415–424.10.1111/fem.2008.65.issue-3
  • Gadanho M, Libkind D, Sampaio JP. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol. 2006;52:552–563.10.1007/s00248-006-9027-y
  • Takashima M, Sugita T, Toriumi Y, et al. Cryptococcus tepidarius sp. nov., a thermotolerant yeast species isolated from a stream from a hot-spring area in Japan. Int J Syst Evol Microbiol. 2009;59:181–185.10.1099/ijs.0.004515-0
  • Pawelek PD, Cheah J, Coulombe R, et al. The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 2000;19:4204–4215.10.1093/emboj/19.16.4204
  • Kitani Y, Tsukamoto C, Zhang G, et al. Identification of an antibacterial protein as L-amino acid oxidase in the skin mucus of rockfish Sebastes schlegeli. FEBS J. 2007;274:125–136.10.1111/j.1742-4658.2006.05570.x
  • Macheroux P, Seth O, Bollschweiler C, et al. L-Amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem. 2001;268:1679–1686.10.1046/j.1432-1327.2001.02042.x
  • Zeller EA, Maritz A. Uber eine neue L-aminosaure-oxidase. Helv Chim Acta. 1944;27:1888–1902.10.1002/hlca.194402701241
  • Yang H, Johnson PM, Ko KC, et al. Cloning, characterization and expression of escapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the sea hare Aplysia californica. J Exp Biol. 2005;208:3609–3622.
  • Davis MA, Askin MC, Hynes MJ. Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans. Appl Environ Microbiol. 2005;71:3551–3555.10.1128/AEM.71.7.3551-3555.2005
  • Takahashi E, Ito K, Yoshimoto T. Cloning of L-amino acid deaminase gene from Proteus vulgaris. Biosci Biotechnol Biochem. 1999;63:2244–2247.10.1271/bbb.63.2244
  • Vallon O, Bulté L, Kuras R, et al. Extensive accumulation of an extracellular L-amino-acid oxidase during gametogenesis of Chlamydomonas reinhardtii. Eur J Biochem. 1993;215:351–360.10.1111/ejb.1993.215.issue-2
  • Kayikci Ö, Nielsen J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15:fov068.10.1093/femsyr/fov068
  • Blocher JC, Busta FF. Constituents of media for recovery of sporeformers from foods. Arch Lebensmittelhyg. 1982;33:138–142.
  • McDonald LC, Hackney CR, Ray B. Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation. Appl Environ Microbiol. 1983;45:360–365.
  • Chen CY, Chen SC, Fingas M, et al. Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. J Hazard Mater. 2010;177:856–863.10.1016/j.jhazmat.2009.12.112
  • Fujii K, Urano N, Ushio H, et al. Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem. 2000;128:909–916.10.1093/oxfordjournals.jbchem.a022841
  • Gao QT, Wong YS, Tam NF. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris. Bioresour Technol. 2011;102:10230–10238.10.1016/j.biortech.2011.08.070
  • Chen CY, Kao CM, Chen SC. Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere. 2008;71:133–139.10.1016/j.chemosphere.2007.10.058
  • Ravichandra P, Gopal M, Annapurna J. Biological sulfide oxidation using autotrophic Thiobacillus sp.: evaluation of different immobilization methods and bioreactors. J Appl Microbiol. 2009;106:1280–1291.10.1111/jam.2009.106.issue-4
  • Zhang J, Zhang L, Qiu J, et al. Isobaric tags for relative and absolute quantitation (iTRAQ)–based proteomic analysis of Cryptococcus humicola response to aluminum stress. J Biosci Bioeng. 2015;120:359–363.10.1016/j.jbiosc.2015.02.007
  • Nian H, Wang G, Chen L. Physiological and transcriptional analysis of the effects of aluminum stress on Cryptococcus humicola. World J Microbiol Biotechnol. 2012;28:2319–2329.10.1007/s11274-012-1039-9
  • Randall DJ, Tsui TKN. Ammonia toxicity in fish. Mar Pollut bull. 2002;45:17–23.10.1016/S0025-326X(02)00227-8
  • Thurston RV, Russo RC, Meyn EL, et al. Chronic toxicity of ammonia to fathead minnows. Trans Am Fish Soc. 1986;115:196–207.10.1577/1548-8659(1986)115<196:CTOATF>2.0.CO;2
  • Gendel Y, Lahav O. A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration. Aquacult Eng. 2013;52:27–38.10.1016/j.aquaeng.2012.07.005
  • Nguyen ML, Tanner CC. Ammonium removal from wastewaters using natural New Zealand zeolites. New Zeal J Agr Res. 1998;41:427–446.10.1080/00288233.1998.9513328
  • Lu S, Liao M, Xie C, et al. Removing ammonium from aquaculture ponds using suspended biocarrier-immobilized ammonia-oxidizing microorganisms. Ann Microbiol. 2015;65:2041–2046.10.1007/s13213-015-1042-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.