726
Views
6
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Amino acid residues critical for DNA binding and inducer recognition in CbnR, a LysR-type transcriptional regulator from Cupriavidus necator NH9

, , , , , , , , , , & show all
Pages 2119-2129 | Received 26 Jun 2017, Accepted 22 Aug 2017, Published online: 22 Sep 2017

References

  • Ogawa N, Miyashita K. Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements. Appl Environ Microbiol. 1995;61(11):3788–3795.
  • Ogawa N, McFall SM, Klem TJ, et al. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J Bacteriol. 1999;181(21):6697–6705.
  • Ogawa N, Miyashita K. The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol. 1999;65(2):724–731.
  • Schell MA. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626.10.1146/annurev.mi.47.100193.003121
  • Maddocks SE, Oyston PC. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology. 2008;154(12):3609–3623.10.1099/mic.0.2008/022772-0
  • Muraoka S, Okumura R, Ogawa N, et al. Crystal structure of a full-length lysr-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. J Mol Biol. 2003;328(3):555–566.10.1016/S0022-2836(03)00312-7
  • Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev. 2004;68(3):474–500.10.1128/MMBR.68.3.474-500.2004
  • Zhou X, Lou Z, Fu S, et al. Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. J Mol Biol. 2010;396(4):1012–1024.10.1016/j.jmb.2009.12.033
  • Craven SH, Ezezika OC, Haddad S, et al. Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1. Mol Microbiol. 2009;72(4):881–894.10.1111/mmi.2009.72.issue-4
  • Ruangprasert A, Craven SH, Neidle EL, et al. Full-length structures of benm and two variants reveal different oligomerization schemes for LysR-Type transcriptional regulators. J Mol Biol. 2010;404(4):568–586.10.1016/j.jmb.2010.09.053
  • Monferrer D, Tralau T, Kertesz MA, et al. Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold. Mol Microbiol. 2010;75(5):1199–1214.10.1111/mmi.2010.75.issue-5
  • Tsai CS, Chen CS, Winans SC. Most mutant OccR proteins that are defective in positive control hold operator DNA in a locked high-angle bend. J Bacteriol. 2011;193(19):5442–5449.10.1128/JB.05352-11
  • Taylor JL, De Silva RS, Kovacikova G, et al. The crystal structure of AphB, a virulence gene activator from Vibrio cholerae, reveals residues that influence its response to oxygen and pH. Mol Microbiol. 2012;83(3):457–470.10.1111/mmi.2012.83.issue-3
  • Alanazi AM, Neidle EL, Momany C. The DNA-binding domain of BenM reveals the structural basis for the recognition of a T-N11-A sequence motif by LysR-type transcriptional regulators. Acta Crystallogr D Biol Crystallogr. 2013;69(10):1995–2007.10.1107/S0907444913017320
  • Jo I, Chung IY, Bae HW, et al. Structural details of the OxyR peroxide-sensing mechanism. Proc Natl Acad Sci USA. 2015;112(20):6443–6448.10.1073/pnas.1424495112
  • Lerche M, Dian C, Round A, et al. The solution configurations of inactive and activated DntR have implications for the sliding dimer mechanism of LysR transcription factors. Sci Rep. 2016;6:6602.10.1038/srep19988
  • Tyrrell R, Verschueren KH, Dodson EJ, et al. The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure. 1997;5(8):1017–1032.10.1016/S0969-2126(97)00254-2
  • Muraoka S, Okumura R, Uragami Y, et al. Purification and crystallization of a Lysr-Type transcriptional regulator cbnr from ralstonia eutropha Nh9. Protein Pept Lett. 2003;10(3):325–329.10.2174/0929866033478942
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1989.
  • Parales RE, Harwood CS. Regulation of the pcaIJ genes for aromatic acid degradation in Pseudomonas putida. J Bacteriol. 1993;175(18):5829–5838.10.1128/jb.175.18.5829-5838.1993
  • Aldrich TL, Frantz B, Gill JF, et al. Cloning and complete nucleotide sequence determination of the catB gene encoding cis, cis-muconate lactonizing enzyme. Gene. 1987;52(2–3):185–195.10.1016/0378-1119(87)90045-X
  • McFall SM, Parsek MR, Chakrabarty AM. 2-chloromuconate and ClcR-mediated activation of the clcABD operon: in vitro transcriptional and DNase I footprint analyses. J Bacteriol. 1997;179(11):3655–3663.10.1128/jb.179.11.3655-3663.1997
  • Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166(4):557–580.10.1016/S0022-2836(83)80284-8
  • Horton RM. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol. 1995;3(2):93–99.
  • Amann E, Ochs B, Abel kJ. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. 1988;69(2):301–315.10.1016/0378-1119(88)90440-4
  • Farinha MA, Kropinski AM. Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol. 1990;172(6):3496–3499.10.1128/jb.172.6.3496-3499.1990
  • Miller JH. Experiments in molecular genetics. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1972.
  • Ezezika OC, Haddad S, Clark TJ, et al. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. J Mol Biol. 2007;367(3):616–629.10.1016/j.jmb.2006.09.090
  • Lang GH, Ogawa N. Mutational analysis of the inducer recognition sites of the LysR-type transcriptional regulator TfdT of Burkholderia sp. NK8. Appl Microbiol Biotechnol. 2009;83(6):1085–1094.10.1007/s00253-009-1960-5
  • Colyer TE, Kredich NM. In vitro characterization of constitutive CysB proteins from Salmonella typhimurium. Mol Microbiol. 1996;21(2):247–256.10.1046/j.1365-2958.1996.6301347.x
  • Lochowska A, Iwanicka-Nowicka R, Plochocka D, et al. Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control. J Biol Chem. 2001;276(3):2098–2107.10.1074/jbc.M007192200
  • Choi H, Kim S, Mukhopadhyay P, et al. Structural basis of the redox switch in the OxyR transcription factor. Cell. 2001;105(1):103–113.10.1016/S0092-8674(01)00300-2
  • Dangel AW, Gibson JL, Janssen AP, et al. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microbiol. 2005;57(5):1397–1414.10.1111/j.1365-2958.2005.04783.x
  • Parsek MR, Kivisaar M, Chakrabarty AM. Differential DNA bending introduced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters. Mol Microbiol. 1995;15(5):819–829.10.1111/j.1365-2958.1995.tb02352.x
  • Wang L, Winans SC. High angle and ligand-induced low angle DNA bends incited by OccR Lie in the same plane with OccR bound to the interior angle. J Mol Biol. 1995;253(1):32–38.10.1006/jmbi.1995.0533
  • Vichivanives P, Bird TH, Bauer CE, et al. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J Mol Biol. 2000;300(5):1079–1099.10.1006/jmbi.2000.3914
  • Kovacikova G, Skorupski K. Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol. 2001;41(2):393–407.10.1046/j.1365-2958.2001.02518.x
  • Bundy BM, Collier LS, Hoover TR, et al. Synergistic transcriptional activation by one regulatory protein in response to two metabolites. Proc Natl Acad Sci USA. 2002;99(11):7693–7698.10.1073/pnas.102605799
  • Wallecha A, Correnti J, Munster V, et al. Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol. 2003;185(7):2203–2209.10.1128/JB.185.7.2203-2209.2003
  • Lochowska A, Iwanicka-Nowicka R, Zaim J, et al. Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Mol Microbiol. 2004;53(3):791–806.10.1111/j.1365-2958.2004.04161.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.