826
Views
3
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Expression, purification, and characterization of a novel acid phosphatase that displays protein tyrosine phosphatases activity from Metarhizium anisopliae strain CQMa102Footnote

, , , , &
Pages 2292-2300 | Received 15 Jun 2017, Accepted 29 Aug 2017, Published online: 11 Oct 2017

References

  • Frank BH, Stefan S, Lydia T, et al. Protein tyrosine phosphatase structure–function relationships in regulation and pathogenesis. Febs J. 2013;280(2):413–431.
  • Jiang L, Whiteway M, Shen SH. A novel type 2C protein phosphatase from the human fungal pathogen Candida albicans. Febs Lett. 2001;509(1):142–144.10.1016/S0014-5793(01)03125-8
  • Cohen S, Dadi H, Shaoul E, et al. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase. Lyp Blood. 1999;93(6):2013.
  • Lim S, Smith KR, Lim STS, et al. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell & Bioscience. 2016;6(1):1–15.
  • Tonks NK, Neel BG. Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 2001;13(2):182.10.1016/S0955-0674(00)00196-4
  • Tonks NK. PTP1B: from the sidelines to the front lines!. FEBS Lett. 2003;546(1):140–148.10.1016/S0014-5793(03)00603-3
  • Chernoff J, Li HC. A major phosphotyrosyl-protein phosphatase from bovine heart is associated with a low-molecular-weight acid phosphatase. Arch Biochem Biophys. 1985;240(1):135–145.10.1016/0003-9861(85)90016-5
  • Zhu P, Li X, Li Z. [Roles of phosphatases in pathogen infection: a review]. Sheng wu gong cheng xue bao = Chin J Biotechnol. 2012;28(2):154–163.
  • Bartels S, González Besteiro MA, Lang D, et al. Emerging functions for plant MAP kinase phosphatases. Trends Plant Sci. 2010;15(6):322–329.10.1016/j.tplants.2010.04.003
  • Salinas I, Maas EW, Muñoz P. Characterization of acid phosphatases from marine scuticociliate parasites and their activation by host’s factors. Parasitology. 2011;138(7):836–847.10.1017/S0031182011000527
  • Vincent MJ, Miranpuri GS, Khachatourians GG. Acid phosphatase activity in hemolymph of the migratory grasshopper, Melanoplus sanguinipes, during Beauveria bassiana infection. Entomol Exp et Appl. 1993;67(2):161–166.10.1111/eea.1993.67.issue-2
  • Xia Y, Clarkson JM, Charnley AK. Acid phosphatases of Metarhizium anisopliae during infection of the tobacco hornworm Manduca sexta. Archives of Microbiology. 2001;176(6):427–434.10.1007/s002030100342
  • Xia Y, Dean P, Judge AJ, et al. Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae. J Insect Physiol. 2000;46(9):1249–1257.10.1016/S0022-1910(00)00045-7
  • Kaaya GP, Munyinyi DM. Biocontrol potential of the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae for tsetse flies (Glossina spp.) at developmental sites. J Invertebrate Pathol. 1995;66(3):237–241.10.1006/jipa.1995.1095
  • Zimmermann G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol. 2007;17(9):879–920.10.1080/09583150701593963
  • Xia Y, Clarkson JM, Charnley AK. Trehalose-hydrolysing enzymes of Metarhizium anisopliae and their role in pathogenesis of the tobacco hornworm, Manduca sexta. J Invertebrate Pathol. 2002;80(3):139–147.10.1016/S0022-2011(02)00105-2
  • Da SM, Santi L, Staats CC, et al. Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res Microbiol. 2005;156(3):382–392.
  • Silva WOB, Mitidieri S, Schrank A, et al. Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Proc Biochem. 2005;40(1):321–326.10.1016/j.procbio.2004.01.005
  • St Leger RJ, Bidochka MJ, Roberts DW. Isoforms of the cuticle-degrading Pr1 proteinase and production of a metalloproteinase by Metarhizium anisopliae. Arch Biochem Biophys. 1994;313(1):1–7.10.1006/abbi.1994.1350
  • Li Z, Wang C, Xia Y. Isolation of two Locust protein targets of a protein tyrosine phosphatase from Metarhizium anisopliae strain CQMa102. J Invertebrate Pathol. 2008;99(2):151.
  • Andersch MA, Szczypinski AJ. Use of p-nitrophenylphosphate as the substrate in determination of serum acid phosphatase. Am J Clin Pathol. 1947;17(7):571.
  • Vincent C, Doublet P, Grangeasse C, et al. Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol. 1999;181(11):3472.
  • Nagy AH, Erdös G, Beliaeva NN, et al. Acid phosphatase isoenzymes of Chlamydomonas reinhardii. Mol Genet Genomics. 1981;184(2):314–317.
  • Lu L, Zhu M. Protein tyrosine phosphatase inhibition by metals and metal complexes. Antioxidants Redox Signaling. 2014;20(14):2210–2224.10.1089/ars.2013.5720
  • Aricescu AR, Fulga TA, Cismasiu V, et al. Intramolecular interactions in protein tyrosine phosphatase RPTPmu: kinetic evidence. Biochem Biophys Res Commun. 2001;280(1):319–327.10.1006/bbrc.2000.4094
  • Kim JH, Cho H, Ryu SE, et al. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys. 2000;382(1):72.10.1006/abbi.2000.1996
  • Wilson M, Hogstrand C, Maret W. Picomolar concentrations of free zinc(II) ions regulate receptor protein-tyrosine phosphatase β activity. J Biol Chem. 2012;287(12):9322–9326.10.1074/jbc.C111.320796
  • Wang Y, Meng F, Zhang Y. Expression, purification and characterization of recombinant protein tyrosine phosphatase from Thermus thermophilus HB27. Acta Biochim Biophys Sin. 2009;41(8):689.10.1093/abbs/gmp057
  • Cosentino-Gomes D, Rocco-Machado N, Santi L, et al. Inhibition of ecto-phosphatase activity in conidia reduces adhesion and virulence of Metarhizium anisopliae on the host insect Dysdercus peruvianus. Curr Microbiol. 2013;66(5):467–474.10.1007/s00284-012-0296-z
  • Wysocki P, Strzezek J. Purification and characterization of a protein tyrosine acid phosphatase from boar seminal vesicle glands. Theriogenology. 2003;59(3–4):1011–1025.10.1016/S0093-691X(02)01121-4
  • Tautz L, Critton DA, Grotegut S. Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol. 1053;2013(1053):179–221.
  • Kolmodin K, Åqvist J. The catalytic mechanism of protein tyrosine phosphatases revisited. Febs Lett. 2001;498(2–3):208–213.10.1016/S0014-5793(01)02479-6
  • Hendriks WJ, Stoker AW. Protein tyrosine phosphatases: sequences and beyond. Febs J. 2008;275(5):815.10.1111/ejb.2008.275.issue-5
  • Szalewicz A, Strzelczyk B, Sopel M, et al. The 35 kDa acid metallophosphatase of the frog Rana esculenta liver: studies on its cellular localization and protein phosphatase activity. Acta Biochim Pol. 2003;50(2):555–566.
  • Guo YL, Terry ME, Roux SJ. Characterization of a cytosolic phosphatase from pea plumules having significant protein tyrosine phosphatase activity. Plant Physiol Biochem. 1998;36(4):269–278.10.1016/S0981-9428(98)80040-5
  • Lau KH, Freeman TK, Baylink DJ. Purification and characterization of an acid phosphatase that displays phosphotyrosyl-protein phosphatase activity from bovine cortical bone matrix. J Biol Chem. 1987;262(3):1389–1397.
  • Lau KH, Farley JR, Baylink DJ. Phosphotyrosyl protein phosphatases. Biochem J. 1989;257(1):23–36.10.1042/bj2570023
  • Leis JF, Kaplan NO. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein. Proc Nat Acad Sci. 1982;79(21):6507–6511.10.1073/pnas.79.21.6507
  • Lau KH, Farley JR, Baylink DJ. Phosphotyrosyl-specific protein phosphatase activity of a bovine skeletal acid phosphatase isoenzyme. Comparison with the phosphotyrosyl protein phosphatase activity of skeletal alkaline phosphatase. J Biol Chem. 1985;260(8):4653–4660.
  • Swarup G, Cohen S, Garbers DL. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun. 1982;107(3):1104–1109.10.1016/0006-291X(82)90635-0
  • Vieille C, Burdette DS, Zeikus JG. Thermozymes. Biotechnol Ann Rev. 1996;2(08):1–83.
  • Ishikawa K, Kimura S, Kanaya S, et al. Structural study of mutants of Escherichia coli ribonuclease HI with enhanced thermostability. Protein Eng Des Sel. 1993;6(1):85.10.1093/protein/6.1.85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.