2,093
Views
15
CrossRef citations to date
0
Altmetric
Special Issue: Recent advances in isoprenoid studies (REVIEW)

Plant-derived isoprenoid sweeteners: recent progress in biosynthetic gene discovery and perspectives on microbial production

ORCID Icon, & ORCID Icon
Pages 927-934 | Received 01 Aug 2017, Accepted 27 Sep 2017, Published online: 01 Dec 2017

References

  • Ferrazzano GF, Cantile T, Alcidi B, et al. Is Stevia rebaudiana Bertoni a non cariogenic sweetener? A review. Molecules. 2016;21:38.
  • Yadav SK, Guleria P. Steviol glycosides from stevia: biosynthesis pathway review and their application in foods and medicine. Crit Rev Food Sci Nutr. 2012;52:988–998.10.1080/10408398.2010.519447
  • Brandle JE, Starratt AN, Gijzen M. Stevia rebaudiana: its agricultural, biological, and chemical properties. Can J Plant Sci. 1998;78:527–536.10.4141/P97-114
  • Ceunen S, Geuns JMC. Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod. 2013;76:1201–1228.10.1021/np400203b
  • Espinoza MI, Vincken JP, Sanders M, et al. Identification, quantification, and sensory characterization of steviol glycosides from differently processed Stevia rebaudiana commercial extracts. J Agric Food Chem. 2014;62:11797–11804.10.1021/jf502878k
  • Prakash I, Campbell M, San Miguel RI, et al. Synthesis and sensory evaluation of ent-kaurane diterpene glycosides. Molecules. 2012;17:8908–8916.10.3390/molecules17088908
  • Lindley MG. Natural high-potency sweeteners. In: O’Donnell K, Kearsley MW, editors. Sweeteners and sugar alternatives in food technology. 2nd ed. Chichester: Wiley-Blackwell; 2012. p. 185–212.10.1002/9781118373941
  • Brandle JE, Richman A, Swanson AK, et al. Leaf ESTs from Stevia rebaudiana: a resource for gene discovery in diterpene synthesis. Plant Mol Biol. 2002;50:613–622.10.1023/A:1019993221986
  • Richman AS, Gijzen M, Starratt AN, et al. Diterpene synthesis in Stevia rebaudiana: recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. Plant J. 1999;19:411–421.10.1046/j.1365-313X.1999.00531.x
  • Yonekura-Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011;66:182–193.10.1111/tpj.2011.66.issue-1
  • Richman A, Swanson A, Humphrey T, et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 2005;41:56–67.
  • Olsson K, Carlsen S, Semmler A, et al. Microbial production of next-generation stevia sweeteners. Microb Cell Fact. 2016;15:207.10.1186/s12934-016-0609-1
  • Kinghora AD, Soejarto DD, Inglett GE. Sweeting agents of plant origin. Crit Rev Plant Sci. 1986;4:79–120.10.1080/07352688609382220
  • Pawar RS, Krynitsky AJ, Rader JI. Sweeteners from plants – with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal Bioanal Chem. 2013;405:4397–4407.10.1007/s00216-012-6693-0
  • Kasai R, Nie RL, Nashi K, et al. Sweet cucurbitane glycosides from fruits of Siraitia siamensis (chi-zi luo-han-guo), a Chinese folk medicine. Agric Biol Chem. 1989;53:3347–3349.
  • Tang Q, Ma X, Mo C, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics. 2011;12:343.10.1186/1471-2164-12-343
  • Wang L, Yang Z, Lu F, et al. Cucurbitane glycosides derived from mogroside IIE: Structure-taste relationships, antioxidant activity, and acute toxicity. Molecules. 2014;19:12676–12689.10.3390/molecules190812676
  • Takasaki M, Konoshima T, Murata Y, et al. Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori. Cancer Lett. 2003;198:37–42.10.1016/S0304-3835(03)00285-4
  • Jin JS, Lee JH. Phytochemical and pharmacological aspects of Siraitia grosvenorii, luo han kuo. Orient Pharm Exp Med. 2012;12:233–239.10.1007/s13596-012-0079-x
  • Itkin M, Davidovich-Rikanati R, Cohen S, et al. The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc Nat Acad Sci USA. 2016;113:E7619–E7628.10.1073/pnas.1604828113
  • Thimmappa R, Geisler K, Louveau T, et al. Triterpene biosynthesis in plants. Annu Rev Plant Biol. 2014;65:225–257.10.1146/annurev-arplant-050312-120229
  • Zhang J, Dai L, Yang J, et al. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 2016;57:1000–1007.10.1093/pcp/pcw038
  • Kitagawa I. Licorice root. A natural sweetener and an important ingredient in Chinese medicine. Pure Appl Chem. 2002;74:1189–1198.
  • Hayashi H, Sudo H. Economic importance of licorice. Plant Biotechnol. 2009;26:101–104.10.5511/plantbiotechnology.26.101
  • Sudo H, Seki H, Sakurai N, et al. Expressed sequence tags from rhizomes of Glycyrrhiza uralensis. Plant Biotechnol. 2009;26:105–107.10.5511/plantbiotechnology.26.105
  • Seki H, Ohyama K, Sawai S, et al. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Nat Acad Sci USA. 2008;105:14204–14209.10.1073/pnas.0803876105
  • Seki H, Sawai S, Ohyama K, et al. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell. 2011;23:4112–4123.10.1105/tpc.110.082685
  • Xu G, Cai W, Gao W, et al. A novel glucuronosyltransferase has an unprecedented ability to catalyse continuous two-step glucuronosylation of glycyrrhetinic acid to yield glycyrrhizin. New Phytol. 2016;212:123–135.10.1111/nph.14039
  • Hayashi H, Inoue K, Ozaki K, et al. Comparative analysis of ten strains of Glycyrrhiza uralensis cultivated in Japan. Biol Pharm Bull. 2005;28:1113–1116.10.1248/bpb.28.1113
  • Ramilowski JA, Sawai S, Seki H, et al. Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant Cell Physiol. 2013;54:697–710.10.1093/pcp/pct057
  • Mochida K, Sakurai T, Seki H, et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 2017;89:181–194.10.1111/tpj.2017.89.issue-2
  • Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440:940–943.10.1038/nature04640
  • Paddon CJ, Westfall PL, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532.10.1038/nature12051
  • Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res. 2014;24:770–773.10.1038/cr.2014.28
  • Kampranis SC, Makris AM. Developing a yeast cell factory for the production of terpenoids. Comput Struct Biotechnol J. 2012;3:e201210006.10.5936/csbj.201210006
  • Moses T, Pollier J, Thevelein JM, et al. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol. 2013;200:27–43.10.1111/nph.12325
  • Arendt P, Miettinen K, Pollier J, et al. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab Eng. 2017;40:165–175.10.1016/j.ymben.2017.02.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.