657
Views
5
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

The similar to RCD-one 1 protein SRO1 interacts with GPX3 and functions in plant tolerance of mercury stress

, , &
Pages 74-80 | Received 04 Sep 2017, Accepted 10 Nov 2017, Published online: 11 Dec 2017

References

  • Schutzendubel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. 2002;53:1351–1365.
  • Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. New Phytol. 2006;170:261–273.10.1111/nph.2006.170.issue-2
  • Singh S, Parihar P, Singh R, et al. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. 2015;6:1143.
  • Sugiyama M. Role of cellular antioxidants in metal-induced damage. Cell Biol Toxicol. 1994;10:1–22.10.1007/BF00757183
  • Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88:1707–1719.10.1016/j.biochi.2006.07.003
  • Haag-Kerwer A, Schafer HJ, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot. 1999;50:1827–1835.10.1093/jxb/50.341.1827
  • Tuli R, Chakrabarty D, Trivedi PK, et al. Recent advances in arsenic accumulation and metabolism in rice. Mol Breeding. 2010;26:307–323.10.1007/s11032-010-9412-6
  • Tian S, Xie R, Wang H, et al. Calcium deficiency triggers phloem remobilization of cadmium in a hyperaccumulating species. Plant Physiol. 2016;172:2300–2313.10.1104/pp.16.01348
  • Jaspers P, Overmyer K, Wrzaczek M, et al. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics. 2010;11:170.10.1186/1471-2164-11-170
  • Zhang X, Zhao X, Li B, et al. SRO1 regulates heavy metal mercury stress response in Arabidopsis thaliana. Chin Sci Bull. 2014;59:3134–3141.10.1007/s11434-014-0356-9
  • Cho U, Park J. Mercury-induced oxidative stress in tomato seedlings. Plant Sci. 2000;156:1–9.10.1016/S0168-9452(00)00227-2
  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, et al. Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol. 2007;176:96–107.10.1111/nph.2007.176.issue-1
  • Xu J, Zhu Y, Ge Q, et al. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol. 2012;196:25–38.
  • Panda SK. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol. 2007;164:1419–1428.10.1016/j.jplph.2007.01.012
  • Trinh NN, Huang TL, Chi WC, et al. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant. 2014;150:205–224.10.1111/ppl.2014.150.issue-2
  • Dixit V, Pandey V, Shyam R. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ. 2002;25:687–693.10.1046/j.1365-3040.2002.00843.x
  • Pandey V, Dixit V, Shyam R. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma. 2009;236:85–95.10.1007/s00709-009-0061-8
  • Steffens B. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci. 2014;5:685.
  • Steffens B, Steffen-Heins A, Sauter M. Reactive oxygen species mediate growth and death in submerged plants. Front Plant Sci. 2013;4:179.
  • Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875.10.1105/tpc.105.033589
  • Arthur JR. The glutathione peroxidases. Cell Mol Life Sci. 2000;57:1825–1835.
  • Delaunay A, Pflieger D, Barrault MB, et al. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell. 2002;111:471–481.10.1016/S0092-8674(02)01048-6
  • Avsian-Kretchmer O, Gueta-Dahan Y, Lev-Yadun S, et al. The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol. 2004;135:1685–1696.10.1104/pp.104.041921
  • Attacha S, Solbach D, Bela K, et al. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. Plant Cell Environ. 2017;40:1281–1295.10.1111/pce.v40.8
  • Herbette S, Lenne C, Leblanc N, et al. Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem. 2002;269:2414–2420.10.1046/j.1432-1033.2002.02905.x
  • Herbette S, Roeckel-Drevet P, Drevet JR. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS J. 2007;274:2163–2180.10.1111/ejb.2007.274.issue-9
  • Ahmad P, Jaleel CA, Salem MA, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol. 2010;30:161–175.10.3109/07388550903524243
  • Miao Y, Lv D, Wang P, et al. An arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell. 2006;18:2749–2766.10.1105/tpc.106.044230
  • Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2:1565–1572.10.1038/nprot.2007.199
  • Gomes-Junior RA, Moldes CA, Delite FS, et al. Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere. 2006;65:1330–1337.10.1016/j.chemosphere.2006.04.056
  • Heidenreich B, Mayer K, Sandermann H, Ernst D. Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure. Plant Cell Environ. 2001;24:1227–1234.10.1046/j.0016-8025.2001.00775.x
  • Du YY, Wang PC, Chen J, et al. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol. 2008;50:1318–1326.10.1111/jipb.2008.50.issue-10
  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, et al. Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot. 2005;56:2239–2251.10.1093/jxb/eri223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.