788
Views
3
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

CpdA is involved in amino acid metabolism in Shewanella oneidensis MR-1

, &
Pages 166-172 | Received 27 Oct 2017, Accepted 27 Nov 2017, Published online: 13 Dec 2017

References

  • Venkateswaran K, Moser DP, Dollhopf ME, et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol. 1999;49(2):705–724.10.1099/00207713-49-2-705
  • Fredrickson JK, Romine MF, Beliaev AS, et al. Towards environmental systems biology of Shewanella. Nat Rev Microbiol. 2008;6(8):592–603.10.1038/nrmicro1947
  • Hau HH, Gralnick JA. Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol. 2007;61:237–258.10.1146/annurev.micro.61.080706.093257
  • Myers CR, Nealson KH. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988;240(4857):1319–1321.10.1126/science.240.4857.1319
  • Sturm G, Richter K, Doetsch A, et al. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J. 2015;9(8):1802–1811.10.1038/ismej.2014.264
  • Saffarini DA, Schultz R, Beliaev A. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J Bacteriol. 2003;185(12):3668–3671.10.1128/JB.185.12.3668-3671.2003
  • Charania MA, Brockman KL, Zhang Y, et al. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol. 2009;191(13):4298–4306.10.1128/JB.01829-08
  • Kasai T, Kouzuma A, Nojiri H, et al. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiol. 2015;15(1):1319.
  • Kouzuma A, Kasai T, Hirose A, et al. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol. 2015;6:609.
  • Botsford JL, Harman JG. Cyclic AMP in prokaryotes. Microbiol Rev. 1992;56(1):100–122.
  • Kolb A, Busby S, Buc H, et al. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–797.10.1146/annurev.bi.62.070193.003533
  • Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70(4):939–1031.10.1128/MMBR.00024-06
  • Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008;11:87–93.10.1016/j.mib.2008.02.007
  • Imamura R, Yamanaka K, Ogura T, et al. Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. J Biol Chem. 1996;271(41):25423–25429.10.1074/jbc.271.41.25423
  • Matange N. Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic AMP hydrolysis and beyond. FEMS Microbiol Lett. 2015;362(22):1–9.
  • Barth E, Gora KV, Gebendorfer KM, et al. Interplay of cellular cAMP levels, S activity and oxidative stress resistance in Escherichia coli. Microbiology. 2009;155(5):1680–1689.10.1099/mic.0.026021-0
  • Kalivoda EJ, Brothers KM, Stella NA, et al. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS ONE. 2013;8(7):e71267.10.1371/journal.pone.0071267
  • Yin J, Meng Q, Fu H, et al. Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis. Sci Rep. 2016;6:27.10.1038/srep24449
  • Fuchs EL, Brutinel ED, Klem ER, et al. In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J Bacteriol. 2010;192(11):2779–2790.10.1128/JB.00168-10
  • Kouzuma A, Meng X-Y, Kimura N, et al. Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol. 2010;76(13):4151–4157.10.1128/AEM.00117-10
  • Kovach ME, Elzer PH, Hill DS, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995;166(1):175–176.10.1016/0378-1119(95)00584-1
  • Saltikov CW, Newman DK. Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci USA. 2003;100(19):10983–10988.10.1073/pnas.1834303100
  • Newton GJ, Mori S, Nakamura R, et al. Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol. 2009;75(24):7674–7681.10.1128/AEM.01142-09
  • Kouzuma A, Oba H, Tajima N, et al. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression. BMC Microbiol. 2014;14(1):190.10.1186/1471-2180-14-190
  • Kouzuma A, Hashimoto K, Watanabe K. Influences of aerobic respiration on current generation by Shewanella oneidensis MR-1 in single-chamber microbial fuel cells. Biosci Biotechnol Biochem. 2012;76(2):270–275.10.1271/bbb.110633
  • Gomelsky M. cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all!. Mol Microbiol. 2011;79(3):562–565.10.1111/j.1365-2958.2010.07514.x
  • Tang YJ, Hwang JS, Wemmer DE, et al. Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol. 2007;73(3):718–729.10.1128/AEM.01532-06
  • Hunt KA, Flynn JM, Naranjo B, et al. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol. 2010;192(13):3345–3351.
  • Pinchuk GE, Geydebrekht OV, Hill EA, et al. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol. 2011;77(23):8234–8240.10.1128/AEM.05382-11
  • Chiang PK, Gordon RK, Tal J, et al. S-Adenosylmethionine and methylation. FASEB J. 1996;10(4):471–480.
  • Driskell LO, Tucker AM, Winkler HH, et al. Rickettsial metK-encoded methionine adenosyltransferase expression in an Escherichia coli metK deletion strain. J Bacteriol. 2005;187(16):5719–5722.10.1128/JB.187.16.5719-5722.2005
  • Keppetipola N, Shuman S. A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2′,3′-cyclic nucleotide phosphodiesterase activity. J Biol Chem. 2008;283(45):30942–30949.10.1074/jbc.M805064200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.