452
Views
6
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Stabilization of mesophilic Allochromatium vinosum cytochrome c′ through specific mutations modeled by a thermophilic homologue

, , , , , & show all
Pages 304-311 | Received 20 Oct 2017, Accepted 14 Dec 2017, Published online: 12 Jan 2018

References

  • Amber RP. Sequence variability in bacterial cytochromes c. Biochim Biophys Acta. 1991;1058:42–47.10.1016/S0005-2728(05)80266-X
  • Moore GR. Bacterial 4-alpha-helical bundle cytochromes. Biochim Biophys Acta. 1991;1058:38–41.10.1016/S0005-2728(05)80265-8
  • Antonyuk SV, Rustage N, Petersen CA, et al. Carbon monoxide poisoning is prevented by the energy costs of conformational changes in gas-binding haemproteins. Proc Natl Acad Sci U S A. 2011;108:15780–15785.10.1073/pnas.1109051108
  • Andrew CR, George SJ, Lawson DM, et al. Six- to five-coordinate heme-nitrosyl conversion in cytochrome c′ and its relevance to guanylate cyclase. Biochemistry. 2002;41:2353–2360.10.1021/bi011419k
  • Hayashi NR, Ishida T, Yokota A, et al. Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol. 1999;49:783–786.10.1099/00207713-49-2-783
  • Fujii S, Masanari M, Inoue H, et al. High thermal stability and unique trimer formation of cytochrome c′ from thermophilic Hydrogenophilus thermoluteolus. Biosci Biotechnol Biochem. 2013;77:1677–1681.10.1271/bbb.130226
  • Evers TH, Merkx M. Successful recombinant production of Allochromatium vinosum cytochrome c′ requires coexpression of cmm genes in heme-rich Escherichia coli JCB712. Biochem Biophys Res Commun. 2005;327:668–674.10.1016/j.bbrc.2004.12.062
  • Holm HW, Vennes JW. Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Appl Microbiol. 1970;19:988–996.
  • Fujii S, Oki H, Kawahara K, et al. Structural and functional insights into thermally stable cytochrome c′ from a thermophile. Protein Sci. 2017;26:737–748.10.1002/pro.3120
  • Ren Z, Meyer T, McRee DE. Atomic structure of a cytochrome c′ with an unusual ligand-controlled dimer dissociation at 1.8 Å resolution. J Mol Biol. 1993;234:433–445.10.1006/jmbi.1993.1597
  • Hasegawa J, Shimahara H, Mizutani M, et al. Stabilization of Pseudomonas aeruginosa cytochrome c551 by systematic amino acid substitutions based on the structure of thermophilic Hydrogenobacter thermophilus cytochrome c552. J Biol Chem. 1999;274:37533–37537.10.1074/jbc.274.53.37533
  • Sambongi Y, Stoll R, Ferguson SJ. Alteration of haem-attachment and signal-cleavage sites for Paracoccus denitrificans cytochrome c550 probes pathway of c-type cytochrome biogenesis in Escherichia coli. Mol Microbiol. 1996;19:1193–1204.10.1111/mmi.1996.19.issue-6
  • Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J. 2000;78:1606–1619.10.1016/S0006-3495(00)76713-0
  • Uchiyama S, Ohshima A, Nakamura S, et al. Complete thermal-unfolding profiles of oxidized and reduced cytochromes c. J Am Chem Soc. 2004;126:14684–14685.10.1021/ja046667t
  • Becktel WJ, Schellman JA. Protein stability curves. Biopolymers. 1987;26:1859–1877.10.1002/(ISSN)1097-0282
  • Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–W258.10.1093/nar/gku340
  • Doyle ML, Gill SJ, Cusanovich MA. Ligand-controlled dissociation of Chromatium vinosum cytochrome c′. Biochemistry. 1986;25:2509–2516.10.1021/bi00357a034
  • Hirano Y, Kimura Y, Suzuki H, et al. Structure analysis and comparative characterization of the cytochrome c′ and flavocytochrome c from thermophilic purple photosynthetic bacterium Thermochromatium tepidum. Biochemistry. 2012;51:6556–6567.10.1021/bi3005522
  • Hasegawa J, Uchiyama S, Tanimoto Y, et al. Selected mutations in a mesophilic cytochrome c confer the stability of a thermophilic counterpart. J Biol Chem. 2000;275:37824–37828.10.1074/jbc.M005861200
  • Yamanaka M, Masanari M, Sambongi Y. Conferment of folding ability to a naturally unfolded apocytochrome c through introduction of hydrophobic amino acid residues. Biochemistry. 2011;50:2313–2320.10.1021/bi101646m
  • Masanari M, Fujii S, Kawahara K, et al. Comparative study on stabilization mechanism of monomeric cytochrome c5 from deep-sea piezophilic Shewanella violacea. Biosci Biotechnol Biochem. 2016;80:2365–2370.10.1080/09168451.2016.1232155
  • Kassner RJ. Ligand binding properties of cytochromes c′. Biochim Biophys Acta. 1991;1058:8–12.10.1016/S0005-2728(05)80257-9
  • Hough MA, Andrew CR. Cytochromes c′: structure, reactivity and relevance to haem-based gas sensing. Adv Microb Physiol. 2015;67:1–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.