2,539
Views
16
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Identification and characterization of chitinolytic bacteria isolated from a freshwater lake

, , , &
Pages 343-355 | Received 31 Oct 2017, Accepted 25 Dec 2017, Published online: 12 Jan 2018

References

  • Yu C, Bassler BL, Roseman S. Chemotaxis of the marine bacterium Vibrio furnissii to sugars. A potential mechanism for initiating the chitin catabolic cascade. J Biol Chem. 1993;268:9405–9409.
  • Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280:309–316.10.1042/bj2800309
  • Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993;293:781–788.10.1042/bj2930781
  • García-Fraga B, Silva FA, López-Seijas J, et al. A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: heterzologous expression, characterization and antifungal activity. Biochem Eng J. 2015;93:84–93.10.1016/j.bej.2014.09.014
  • Hoell IA, Dalhus B, Heggset EB, et al. Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes. FEBS J. 2006;273:4889–4900.10.1111/ejb.2006.273.issue-21
  • Huang L, Garbulewska E, Sato K, et al. Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase. J Biosci Bioeng. 2012;113:293–299.10.1016/j.jbiosc.2011.10.018
  • Kong H, Shimosaka M, Ando Y, et al. Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol Ecol. 2001;37:135–141.10.1111/fem.2001.37.issue-2
  • Ohno T, Armand S, Hata T, et al. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol. 1996;178:5065–5070.10.1128/jb.178.17.5065-5070.1996
  • Tsujibo H, Okamoto T, Hatano N, et al. Family 19 chitinases from Streptomyces thermoviolaceus OPC-520: molecular cloning and characterization. Biosci Biotech Biochem. 2000;64:2445–2453.10.1271/bbb.64.2445
  • Ueda M, Kojima M, Yoshikawa T, et al. A novel type of family 19 chitinase from Aeromonas sp. No.10S-24. Cloning, sequence, expression, and the enzymatic properties. Eur J Biochem. 2003;270:2513–2520.10.1046/j.1432-1033.2003.03624.x
  • Hashimoto M, Ikegami T, Seino S, et al. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J Bacteriol. 2000;182:3045–3054.10.1128/JB.182.11.3045-3054.2000
  • Howard MB, Ekborg NA, Taylor LE 2nd, et al. Chitinase B of “Microbulbifer degradans” 2-40 contains two catalytic domains with different chitinolytic activities. J Bacteriol. 2004;186:1297–1303.10.1128/JB.186.5.1297-1303.2004
  • Tanaka T, Fujiwara S, Nishikori S, et al. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl Environ Microbiol. 1999;65:5338–5344.
  • Watanabe T, Kimura K, Sumiya T, et al. Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol. 1997;179:7111–7117.10.1128/jb.179.22.7111-7117.1997
  • Watanabe T, Oyanagi W, Suzuki K, et al. Chitinase system of Bacillus circulans WL-12 and importance of chitinase Al in chitin degradation. J Bacteriol. 1990;172:4017–4022.10.1128/jb.172.7.4017-4022.1990
  • Chernin L, Ismailov Z, Haran S, et al. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol. 1995;61:1720–1726.
  • Itoh Y, Watanabe J, Fukada H, et al. Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Appl Microbiol Biotechnol. 2006;72:1176–1184.10.1007/s00253-006-0405-7
  • Kamensky M, Ovadis M, Chet I, et al. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem. 2003;35:323–331.10.1016/S0038-0717(02)00283-3
  • Prasanna L, Eijsink VG, Meadow R, et al. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl Microbiol Biotechnol. 2013;97:1601–1611.10.1007/s00253-012-4019-y
  • Rahman MME, Hossain DM, Suzuki K, et al. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Aust. Plant Pathol. 2016;45:103–117.
  • Bhattacharya D, Nagpure A, Gupta RK. Bacterial chitinase: properties and potential. Crit Rev Biotechnol. 2007;27:21–28.10.1080/07388550601168223
  • Meziane H, Gavriel S, Ismailov Z, et al. Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action. Postharvest Biol Technol. 2006;39:125–133.10.1016/j.postharvbio.2005.10.007
  • Kurze S, Bahl H, Dahl R, et al. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis. 2001;85:529–534.10.1094/PDIS.2001.85.5.529
  • Kawase T, Yokokawa S, Saito A, et al. Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem. 2006;70:988–998.10.1271/bbb.70.988
  • Watanabe T, Kanai R, Kawase T, et al. Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology. 1999;145:3353–3363.10.1099/00221287-145-12-3353
  • Chernin LS, De la Fuente L, Sobolev V, et al. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol. 1997;63:834–839.
  • Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol. 2006;14:389–397.10.1016/j.tim.2006.07.001
  • Kjelleberg S, Givskov M. The biofilm mode of life: mechanisms and adaptations. Wymondham: Horizon Bioscience; 2007.
  • Seneviratne G, Zavahir JS, Bandara WMMS, et al. Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol. 2008;24:739–743.10.1007/s11274-007-9539-8
  • Hogan DA, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002;296:2229–2232.10.1126/science.1070784
  • Brandl MT, Carter MQ, Parker CT, et al. Salmonella Biofilm formation on Aspergillus niger involves cellulose – chitin interactions. PLoS One. 2011;6:e25553.10.1371/journal.pone.0025553
  • Hover T, Maya T, Ron S, et al. Mechanisms of bacterial (Serratia marcescens) attachment to, migration along, and killing of fungal hyphae. Appl Environ Microbiol. 2016;82:2585–2594.10.1128/AEM.04070-15
  • Sato K, Kato Y, Taguchi G, et al. Chitiniphilus shinanonensis gen. nov., sp. nov., a novel chitin-degrading bacterium belonging to Betaproteobacteria. J Gen Appl Microbiol. 2009;55:147–153.10.2323/jgam.55.147
  • Imoto T, Yagishita K. A simple activity measurement of lysozyme. Agric Biol Chem. 1971;35:1154–1156.10.1080/00021369.1971.10860050
  • Jackson DW, Suzuki K, Oakford L, et al. Biofilm formation and dispersal under the influence of the global regulator CsrA of escherichia coli. J Bacteriol. 2002;184:290–301.10.1128/JB.184.1.290-301.2002
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729.10.1093/molbev/mst197
  • Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948.10.1093/bioinformatics/btm404
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120.10.1007/BF01731581
  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791.10.1111/j.1558-5646.1985.tb00420.x
  • Vaaje-Kolstad G, Horn SJ, Sørlie M, et al. The chitinolytic machinery of Serratia marcescens – a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J. 2013;280:3028–3049.10.1111/febs.12181
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.10.1038/227680a0
  • Yamada H, Imoto T. A convenient synthesis of glycolchitin, a substrate of lysozyme. Carbohydr Res. 1981;92:160–162.10.1016/S0008-6215(00)85993-5
  • Jeuniaux C. Chitinase. Methods Enzymol. 1966;8:644–650.10.1016/0076-6879(66)08117-5
  • Carrero P, Garrote JA, Pacheco S, et al. Report of six cases of human infection by Serratia plymuthica. J Clin Microbiol. 1995;33:275–276.
  • Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev. 2011;24:755–791.10.1128/CMR.00017-11
  • Morikawa M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng. 2006;101:1–8.10.1263/jbb.101.1
  • Sato K, Azama Y, Nogawa M, et al. Analysis of a change in bacterial community in different environments with addition of chitin or chitosan. J Biosci Bioeng. 2010;109:472–478.10.1016/j.jbiosc.2009.10.021
  • Sato K, Kato Y, Fukamachi A, et al. Construction and analysis of a bacterial community exhibiting strong chitinolytic activity. Biosci Biotechnol Biochem. 2010;74:636–640.10.1271/bbb.90856
  • Huang L, Shizume A, Nogawa M, et al. Heterologous expression and functional characterization of a novel chitinase from the chitinolytic bacterium chitiniphilus shinanonensis. Biosci Biotechnol Biochem. 2012;76:517–522.10.1271/bbb.110822
  • Itoh T, Hibi T, Fujii Y, et al. Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl Environ Microbiol. 2013;79:7482–7490.10.1128/AEM.02483-13
  • Itoh T, Sugimoto I, Hibi T, et al. Overexpression, purification, and characterization of Paenibacillus cell surface-expressed chitinase ChiW with two catalytic domains. Biosci Biotechnol Biochem. 2014;78:624–634.10.1080/09168451.2014.891935
  • Sheu SY, Chiu TF, Chou JH, et al. Andreprevotia lacus sp. nov., isolated from a fish-culture pond. Int J Syst Evol Microbiol. 2009;59:2482–2485.10.1099/ijs.0.009233-0
  • Liu X, Jia J, Atkinson S, et al. Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World J Microbiol Biotechnol. 2010;26:1465–1471.10.1007/s11274-010-0321-y
  • Liu X, Bimerew M, Ma Y, et al. Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett. 2007;270:299–305.10.1111/fml.2007.270.issue-2
  • Frankowski J, Lorito M, Scala F, et al. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol. 2001;176:421–426.10.1007/s002030100347
  • Liu X, Jia J, Popat R, et al. Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style. BMC Microbiol. 2011;11:26.10.1186/1471-2180-11-26
  • Liu X, Wu Y, Chen Y, et al. RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol. 2016;167:168–177.10.1016/j.resmic.2015.11.003
  • Levenfors JJ, Hedman R, Thaning C, et al. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol Biochem. 2004;36:4677–4685.
  • Frank JA, Reich CI, Sharma S, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol. 2008;74:2461–2470.10.1128/AEM.02272-07
  • Youssef N, Sheik CS, Krumholz LR, et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol. 2009;75:5227–5236.10.1128/AEM.00592-09

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.