828
Views
6
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Prunasin production using engineered Escherichia coli expressing UGT85A47 from Japanese apricot and UDP-glucose biosynthetic enzyme genes

ORCID Icon & ORCID Icon
Pages 2021-2029 | Received 20 Apr 2018, Accepted 29 Jun 2018, Published online: 20 Jul 2018

References

  • Facchini PJ, Bohlmann J, Covello PS, et al Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol. 2012;30(3):127–131.
  • Gleadow RM, Møller BL. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol. 2014;65:155–185.
  • Dadashipour M, Asano Y. Hydroxynitrile lyases: insights into biochemistry, discovery, and engineering. ACS Catal. 2011;1(9):1121–1149.
  • Asano Y, Kawahara N. A new S-hydroxynitrile lyase from baliospermum montanum—its structure, molecular dynamics simulation, and improvement by protein engineering. Ind Biotechnol. 2016;12(2):91–97.
  • Price NR. The mode of action of fumigants. J Stored Prod Res. Elsevier. 1985;21(4):157–164.
  • Sibbesen O, Koch B, Halkier BA, et al Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc Natl Acad Sci USA. 1994;91(21):9740–9744.
  • Maria Koch B, Sibbesen O, Halkier BA, et al The primary sequence of cytochrome p450tyr, the multifunctional n-hydroxylase catalyzing the conversion of l-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the Cyanogenic Glucoside Dhurrin in Sorghum Bicolor (L.) Moench. Arch Biochem Biophys. 1995;323(1):177–186.
  • Bak S, Kahn RA, Nielsen HL, et al Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol. 1998;36(3):393–405.
  • Thorsøe KS, Bak S, Olsen CE, et al Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol. 2005;139(2):664–673.
  • Del Cueto J, Ionescu IA, Pičmanová M, et al Cyanogenic glucosides and derivatives in almond and sweet cherry flower buds from dormancy to flowering. Front Plant Sci. 2017;8:800.
  • Bolarinwa IF, Orfila C, Morgan MRA. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry. 2014;152:133–139.
  • Yamaguchi T, Yamamoto K, Asano Y. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in L-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc. Plant Mol Biol. 2014;86(1–2):215–223.
  • Franks TK, Yadollahi A, Wirthensohn MG. A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels. Func Plant Biol. 2008;35(3):236.
  • Paoletti I, De Gregorio V, Baroni A, et al Amygdalin analogues inhibit IFN-γ signalling and reduce the inflammatory response in human epidermal keratinocytes. Inflammation. 2013;36(6):1316–1326.
  • Mizushina Y, Takahashi N, Ogawa A, et al The cyanogenic glucoside, prunasin (D-mandelonitrile-beta-D-glucoside), is a novel inhibitor of DNA polymerase beta. J Biochem. 1999;126(2):430–436.
  • Ohtsubo T, Ikeda F. Seasonal changes of cyanogenic glycosides in Mume (Prunus mume Sieb. et Zucc.) seeds. J Jpn Soc Hortic Sci. 1994;62(4):695–700.
  • Fischer E, Bergmann M. Synthese des mandelnitril-glucosids, sambunigrins und ähnlicher stoffe. Ber Dtsch Chem Ges. Berlin, Heidelberg: Springer, Berlin, Heidelberg. (Chapter7). 1917. Vol. 50. 1047–1069.
  • Nakajima N, Ubukata M. Facile synthesis of cyanogen glycosides (R)-prunasin, linamarin and (S)-heterodendrin. Biosci Biotechnol Biochem. 1998;62(3):453–458.
  • Rivas F, Parra A, Martinez A, et al Enzymatic glycosylation of terpenoids. Phytochem Rev. 2013;12(2):327–339.
  • Lim E-K, Ashford DA, Hou B, et al Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol Bioeng. 2004;87(5):623–631.
  • Chassagne D, Crouzet JC, Bayonove CL. Identification and quantification of passion fruit cyanogenic glycosides. J Agric Food Chem. 1996;44(12):3817–3820.
  • Zhang Q, Chen W, Sun L, et al The genome of Prunus mume. Nat Commun. 2012;3:1318.
  • Gertz EM, Yu Y-K, Agarwala R, et al Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 2006;4:41.
  • Mackenzie PI, Bock KW, Burchell B, et al Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics. 2005;15(10):677–685.
  • Sánchez-Pérez R, Jørgensen K, Olsen CE, et al Bitterness in almonds. Plant Physiol. 2008;146(3):1040–1052.
  • Yamaguchi T, Kuwahara Y, Asano Y. A novel cytochrome P450, CYP3201B1, is involved in (R)‐mandelonitrile biosynthesis in a cyanogenic millipede. FEBS Open Bio. 2017;7:335–347.
  • Hansen KS, Kristensen C, Tattersall DB, et al The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry. 2003;64(1):143–151.
  • Kannangara R, Motawia MS, Hansen NKK, et al Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Plant J. 2011;68(2):287–301.
  • Nielsen KA, Tattersall DB, Jones PR, et al Metabolon formation in dhurrin biosynthesis. Phytochemistry. 2008;69(1):88–98.
  • Singleton C, Howard TP, Smirnoff N. Synthetic metabolons for metabolic engineering. J Exp Bot. 2014;65(8):1947–1954.
  • Wahab MF, Breitbach ZS, Armstrong DW, et al. Problems and pitfalls in the analysis of amygdalin and its epimer. J Agric Food Chem. 2015;63(40):8966–8973.
  • Mao Z, Shin H-D, Chen RR. Engineering the E. coli UDP-glucose synthesis pathway for oligosaccharide synthesis. Biotechnol Prog. 2006;22(2):369–374.
  • Bennett BD, Kimball EH, Gao M, et al Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009;5(8):593–599.
  • Noguchi T, Shiba T. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci Biotechnol Biochem. 1998;62(8):1594–1596.
  • Murata K, Uchida T, Kato J, et al Polyphosphate kinase: distribution, some properties and its application as an ATP regeneration system. Agric Biol Chem. 1988;52(6):1471–1477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.