501
Views
4
CrossRef citations to date
0
Altmetric
Food & Nutrition Science

Long-term dietary supplementation with the green tea cultivar Sunrouge prevents age-related cognitive decline in the senescence-accelerated mouse Prone8

ORCID Icon, , , , &
Pages 339-347 | Received 12 Jul 2018, Accepted 24 Sep 2018, Published online: 08 Oct 2018

References

  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–356.
  • Wimo A, Winblad B, Aguero-Torres H, et al The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord. 2003;17(2):63–67.
  • Rowe CC, Ellis KA, Rimajova M, et al Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31(8):1275–1283.
  • Sperling RA, Aisen PS, Beckett LA, et al Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–292.
  • Riedel WJ. Preventing cognitive decline in preclinical Alzheimer’s disease. Curr Opin Pharmacol. 2014;14:18–22.
  • Kuriyama S, Hozawa A, Ohmori K, et al Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya project 1. Am J Clin Nutr. 2006;83(2):355–361.
  • Noguchi-Shinohara M, Yuki S, Dohmoto C, et al Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS One. 2014;9(5):e96013.
  • Tomata Y, Sugiyama K, Kaiho Y, et al Green tea consumption and the risk of incident dementia in elderly Japanese: the ohsaki cohort 2006 study. Am J Geriatr Psychiatry. 2016;24(10):881–889.
  • Ma QP, Huang C, Cui QY, et al Meta-analysis of the association between tea intake and the risk of cognitive disorders. PLoS One. 2016;11(11):e0165861.
  • Harbowy EM, Balentine AD. Tea chemistry. Crit Rev Plant Sci. 1997;16:415–480.
  • Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry. 2006;67(17):1849–1855.
  • Biasibetti R, Tramontina AC, Costa AP, et al Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res. 2013;236(1):186–193.
  • Rezai-Zadeh K, Shytle D, Sun N, et al Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci. 2005;25(38):8807–8814.
  • Rezai-Zadeh K, Arendash GW, Hou H, et al Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008;1214:177–1787.
  • Saito T, Honma D, Tagashira M, et al Anthocyanins from new red leaf tea ‘Sunrouge’. J Agric Food Chem. 2011;59(9):4779–4782.
  • Maeda-Yamamoto M, Saito T, Nesumi A, et al Chemical analysis and acetylcholinesterase inhibitory effect of anthocyanin-rich red leaf tea (Cv. Sunrouge). J Sci Food Agric. 2012;92(11):2379–2386.
  • Fujimura Y, Kurihara K, Ida M, et al Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars. PLoS One. 2011;6(8):e23426.
  • Kumazoe M, Fujimura Y, Hidaka S, et al Metabolic profiling-based data-mining for an effective chemical combination to induce apoptosis of cancer cells. Sci Rep. 2015;5:9474.
  • Takeda T. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging. 1999;20(2):105–110.
  • Chen GH, Wang YJ, Qin S, et al Age-related spatial cognitive impairment is correlated with increase of synaptotagmin 1 in dorsal hippocampus in SAMP8 mice. Neurobiol Aging. 2007;28(4):611–618.
  • Petursdottir AL, Farr SA, Morley JE, et al Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM). Neurobiol Aging. 2007;28(8):1170–1178.
  • Gong Y, Liu L, Xie B, et al Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Behav Brain Res. 2008;194(1):100–107.
  • Butterfield DA, Poon HF. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol. 2005;40(10):774–783.
  • Terahara N, Takeda Y, Nesumi A, et al Anthocyanins from red flower tea (Benibana-cha), Camellia sinensis. Phytochemistry. 2001;56(4):359–361.
  • Monobe M, Nomura S, Ema K, et al Quercetin glycosides-rich tea cultivars (Camellia sinensis L.) in Japan. Food Sci Technol Res. 2015;21(3):333–340.
  • Wan C, Yu Y, Zhou S, et al Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Pharmacogn Mag. 2011;7(25):40–45.
  • Wang H, Ferguson GD, Pineda VV, et al Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP. Nat Neurosci. 2004;7(6):635–642.
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–185.
  • Stockley JH, O’Neill C. Understanding BACE1: essential protease for amyloid-beta production in Alzheimer’s disease. Cell Mol Life Sci. 2008;65(20):3265–3289.
  • Iwata N, Tsubuki S, Takaki Y, et al Metabolic regulation of brain Abeta by neprilysin. Science. 2001;292(5521):1550–1552.
  • Shimohama S, Taniguchi T, Fujiwara M, et al Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem. 1986;46(1):288–293.
  • Whitehouse PJ, Martino AM, Antuono PG, et al Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res. 1986;371(1):146–151.
  • Mohapel P, Leanza G, Kokaia M, et al Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging. 2005;26(6):939–946.
  • Li Q, Zhao HF, Zhang ZF, et al Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience. 2009;163(3):741–749.
  • Youdim KA, Qaiser MZ, Begley DJ, et al Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med. 2004;36(5):592–604.
  • Rogerio AP, Kanashiro A, Fontanari C, et al Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm Res. 2007;56(10):402–408.
  • Mohammadi HS, Goudarzi I, Lashkarbolouki T, et al Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats. Behav Brain Res. 2014;270:196–205.
  • Hirohata M, Hasegawa K, Tsutsumi-Yasuhara S, et al The anti-amyloidogenic effect is exerted against Alzheimer’s beta-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry. 2007;46(7):1888–1899.
  • DeToma AS, Choi JS, Braymer JJ, et al Myricetin: a naturally occurring regulator of metal-induced amyloid-β aggregation and neurotoxicity. Chembiochem. 2011;12(8):1198–1201.
  • Wang QM, Wang GL, Ma ZG. Protective effects of myricetin on chronic stress-induced cognitive deficits. Neuroreport. 2016;27(9):652–658.
  • Del Rio D, Borges G, Crozier A. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br J Nutr. 2010;104(Suppl 3):S67–90.
  • Shih PH, Chan YC, Liao JW, et al Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J Nutr Biochem. 2010;21(7):598–605.
  • Cox CJ, Choudhry F, Peacey E, et al Dietary (-)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing. Neurobiol Aging. 2015;36(1):178–187.
  • Chang X, Rong C, Chen Y, et al (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Exp Cell Res. 2015;334(1):136–145.
  • Kim HK, Kim M, Kim S, et al Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci Biotechnol Biochem. 2004;68(9):1977–1979.
  • Papandreou MA, Dimakopoulou A, Linardaki ZI, et al Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res. 2009;198(2):352–358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.