933
Views
8
CrossRef citations to date
0
Altmetric
Award Review

Biochemical and thermodynamic analyses of energy conversion in extremophiles

Pages 49-64 | Received 30 Jun 2018, Accepted 17 Oct 2018, Published online: 31 Oct 2018

References

  • Demirjian DC, Morís-Varas F, Cassidy CS. Enzymes from extremophiles. Curr Opin Chem Biol. 2001;5:144–151.
  • Morozkina EV, Slutskaya ES, Fedorova TV, et al. Extremophilic microorganisms: biochemical adaptation and biotechnological application. Appl Biochem Microbiol. 2010;46:1–14.
  • Sarethy IP, Saxena Y, Kapoor A, et al. Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol. 2011;38:769–790.
  • Sharma A, Kawarabayasi Y, Satyanarayana T. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles. 2012;16:1–19.
  • Bischoff JL, Rosenbauer JR. Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415ºC: A refined determination of the critical point and two-phase boundary of seawater. Geochim Cosmochim Acta. 1988;52:2121–2126.
  • Koschinsky A, Garbe-Schönberg D, Sander S, et al. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5 S on the Mid-Atlantic Ridge. Geology. 2008;36:615–618.
  • Heine M, Chandra SB. The linkage between reverse gyrase and hyperthermophiles: a review of their invariable association. J Microbiol. 2009;47:229–234.
  • Takai K, Nakamura K, Toki T, et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A. 2008;105:10949–10954.
  • Takai K, Gamo T, Tsunogai U, et al. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles. 2004;8:269–282.
  • Feller G. Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter. 2010;22:323101.
  • Lavire C, Normand P, Alekhina I, et al. Presence of Hydrogenophilus thermoluteolus DNA in accretion ice in the subglacial Lake Vostok, Antarctica, assessed using rrs, cbb and hox. Environ Microbiol. 2006;8:2106–2114.
  • Feller G. Life at low temperatures: is disorder the driving force? Extremophiles. 2007;11:211–216.
  • Mykytczuk NC, Foote SJ, Omelon CR, et al. Bacterial growth at −15ºC; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 2013;7:1211–1226.
  • Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–6583.
  • Kato C, Li L, Tamaoka J, et al. Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles. 1997;1:117–123.
  • Kusube M, Kyaw TS, Tanikawa K, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–831.
  • Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 2010;18:413–422.
  • Zobell CE, Cobet AB. Filament formation by Escherichia coli at increased hydrostatic pressures. J Bacteriol. 1964;87:710–719.
  • Kimura K, Morimatsu K, Inaoka T, et al. Injury and recovery of Escherichia coli ATCC25922 cells treated by high hydrostatic pressure at 400-600 MPa. J Biosci Bioeng. 2017;23:698–706.
  • Kushner DJ. Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein L, editors. The biology of halophilic bacteria. Boca Raton, FL: CRC Press; 1993. p. 87–103.
  • Bowers KJ, Wiegel J. Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles. 2011;15:119–128.
  • van der Wielen PW, Bolhuis H, Borin S, et al. Biodeep scientific party. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science. 2005;307:121–123.
  • Hallsworth JE, Yakimov MM, Golyshin PN, et al. Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol. 2007;9:801–813.
  • Schleper C, Pühler G, Kühlmorgen B, et al. Life at extremely low pH. Nature. 1995;375:741–742.
  • Schleper C, Puehler G, Holz I, et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol. 1995;177:7050–7059.
  • Czop M, Motyka J, Sracek O, et al. Geochemistry of the hyperalkaline Gorka pit lake (pH> 13) in the Chrzanow region, southern Poland. Water Air Soil Pollution. 2011;214:423–434.
  • Roadcap GS, Sanford RA, Jin Q, et al. Extremely alkaline (pH > 12) ground water hosts diverse microbial community. Ground Water. 2006;44:511–517.
  • Takai K, Moser DP, Onstott TC, et al. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol. 2001;51:1245–1256.
  • Horikoshi K. Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev. 1999;63:735–750.
  • Harrison JP, Gheeraert N, Tsigelnitskiy D, et al. The limits for life under multiple extremes. Trends Microbiol. 2013;21:204–212.
  • Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61:262–280.
  • Hoehler TM. An energy balance concept for habitability. Astrobiology. 2007;7:824–838.
  • Oren A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol. 2013;4:315.
  • Médicis ED, Paquette J, Gauthier JJ, et al. Magnesium and manganese content of halophilic bacteria. Appl Environ Microbiol. 1986;52:567–573.
  • George P, Witonsky RJ, Trachtman M, et al. “Squiggle-H2O”. An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions. Biochim Biophys Acta. 1970;223:1–15.
  • de Meis L. Role of water in the energy of hydrolysis of phosphate compounds – energy transduction in biological membranes. Biochim Biophys Acta. 1989;973:333–349.
  • Saint-Martin H, Ortega-Blake I, Leś A, et al. The role of hydration in the hydrolysis of pyrophosphate. A Monte Carlo simulation with polarizable-type interaction potentials. Biochim Biophys Acta. 1994;1207:12–23.
  • Hong J, Yoshida N, Chong SH, et al. Elucidating the molecular origin of hydrolysis energy of pyrophosphate in water. J Chem Theory Comput. 2012;8:2239–2246.
  • Romero PJ, de Meis L. Role of water in the energy of hydrolysis of phosphoanhydride and phosphoester bonds. J Biol Chem. 1989;264:7869–7873.
  • Madern D, Ebel C, Zaccai G. Halophilic adaptation of enzymes. Extremophiles. 2000;4:91–98.
  • Kastritis PL, Papandreou NC, Hamodrakas SJ. Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs. Int J Biol Macromol. 2007;41:447–453.
  • Siglioccolo A, Paiardini A, Piscitelli M, et al. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol. 2011;11:50.
  • Miyashita Y, Ohmae E, Nakasone K, et al. Effects of salt on the structure, stability, and function of a halophilic dihydrofolate reductase from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1. Extremophiles. 2015;19:479–493.
  • Takashina T, Hamamoto T, Otozai K, et al. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Syst Appl Microbiol. 1990;13:177–181.
  • Ozawa K, Harashina T, Yatsunami R, et al. Gene cloning, expression and partial characterization of cell division protein FtsZ1 from extremely halophilic archaeon Haloarcula japonica strain TR-1. Extremophiles. 2005;9:281–288.
  • Onodera M, Yatsunami R, Tsukimura W, et al. Gene analysis, expression, and characterization of an intracellular α-amylase from the extremely halophilic archaeon Haloarcula japonica. Biosci Biotechnol Biochem. 2013;77:281–288.
  • Ohshida T, Hayashi J, Satomura T, et al. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase. Protein Expr Purif. 2016;126:62–68.
  • Wakai S, Abe A, Fujii S, et al. Pyrophosphate hydrolysis in the extremely halophilic archaeon Haloarcula japonica is catalyzed by a single enzyme with a broad ionic strength range. Extremophiles. 2017;21:471–477.
  • Boujelben I, Gomariz M, Martínez-García M, et al. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie Van Leeuwenhoek. 2012;101:845–857.
  • Mancinelli R, Botti A, Bruni F, et al. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B. 2007;111:13570–13577.
  • Karan R, Capes MD, DasSarma S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst. 2012;8(1):4.
  • Frolow F, Harel M, Sussman JL, et al. Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nat Struct Biol. 1996;3:452–458.
  • McMillan LJ, Hepowit NL, Maupin-Furlow JA. Archaeal inorganic pyrophosphatase displays robust activity under high-salt conditions and in organic solvents. Appl Environ Microbiol. 2015;82:538–548.
  • Madern D, Ebel C. Influence of an anion-binding site in the stabilization of halophilic malate dehydrogenase from Haloarcula marismortui. Biochimie. 2007;89:981–987.
  • Zhang G, Ge H. Protein hypersaline adaptation: insight from amino acids with machine learning algorithms. Protein J. 2013;32:239–245.
  • Taupin CM, Härtlein M, Leberman R. Seryl-tRNA synthetase from the extreme halophile Haloarcula marismortui–isolation, characterization and sequencing of the gene and its expression in Escherichia coli. Eur J Biochem. 1997;243:141–150.
  • Marg BL, Schweimer K, Sticht H, et al. A two-alpha-helix extra domain mediates the halophilic character of a plant-type ferredoxin from halophilic archaea. Biochemistry. 2005;44:29–39.
  • Evilia C, Hou YM. Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase. Biochemistry. 2006;45:6835–6845.
  • Wolfenden R. Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chem Rev. 2006;106:3379–3396.
  • Wakai S, Kidokoro S, Masaki K, et al. Constant enthalpy change value during pyrophosphate hydrolysis within the physiological limits of NaCl. J Biol Chem. 2013;288:29247–29251.
  • Morin PE, Freire E. Direct calorimetric analysis of the enzymatic activity of yeast cytochrome c oxidase. Biochemistry. 1991;30:8494–8500.
  • Todd MJ, Gomez J. Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal Biochem. 2001;296:179–187.
  • Bianconi ML. Calorimetric determination of thermodynamic parameters of reaction reveals different enthalpic compensations of the yeast hexokinase isozymes. J Biol Chem. 2003;278:18709–18713.
  • Hau HH, Gralnick JA. Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol. 2007;61:237–258.
  • Nogi Y, Kato C, Horikoshi K. Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol. 1998;170:331–338.
  • Venkateswaran K, Dollhopf ME, Aller R, et al. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol. 1998;48:965–972.
  • Kuribayashi TA, Fujii S, Masanari M, et al. Difference in NaCl tolerance of membrane-bound 5ʹ-nucleotidases purified from deep-sea and brackish water Shewanella species. Extremophiles. 2017;21:357–368.
  • Nealson KH, Rowe AR. Electromicrobiology: realities, grand challenges, goals and predictions. Microb Biotechnol. 2016;9:595–600.
  • Amend JP, Plyasunov AV. Carbohydrates in thermophile metabolism: calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochim Cosmochima Acta. 2001;65:3901–3917.
  • Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 2001;25:175–243.
  • Goto E, Kodama T, Minoda Y. Growth and taxonomy of thermophilic hydrogen bacteria. Agric Biol Chem. 1978;42:1305–1308.
  • Wakai S, Masanari M, Ikeda T, et al. Oxidative phosphorylation in a thermophilic, facultative chemoautotroph, Hydrogenophilus thermoluteolus, living prevalently in geothermal niches. Environ Microbiol Rep. 2013;5:235–242.
  • Jetten MS, Stams AJ, Zehnder AJ. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J Bacteriol. 1989;171:5430–5435.
  • Kumari S, Tishel R, Eisenbach M, et al. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol. 1995;177:2878–2886.
  • Mayer F, Küper U, Meyer C, et al. AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J Bacteriol. 2012;194:1572–1581.
  • Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43.
  • Fujii S, Oki H, Kawahara K, et al. Structural and functional insights into thermally stable cytochrome c’ from a thermophile. Protein Sci. 2017;26:737–748.
  • Kato Y, Fujii S, Kuribayashi TA, et al. Thermal stability of cytochrome c’ from mesophilic Shewanella amazonensis. Biosci Biotechnol Biochem. 2015;79:1125–1129.
  • Cacciapuoti G, Porcelli M, Bertoldo C, et al. Purification and characterization of extremely thermophilic and thermostable 5ʹ-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds. J Biol Chem. 1994;269:24762–24769.
  • Cacciapuoti G, Fuccio F, Petraccone L, et al. Role of disulfide bonds in conformational stability and folding of 5ʹ-deoxy-5ʹ-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochim Biophys Acta. 2012;1824:1136–1143.
  • Fukuchi S, Nishikawa K. Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol. 2001;309:835–843.
  • Chan CH, Yu TH, Wong KB. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS ONE. 2011;6(6):e21624.
  • Ambler RP. Sequence variability in bacterial cytochromes c. Biochim Biophys Acta. 1991;1058:42–47.
  • Kang X, Carey J. Role of heme in structural organization of cytochrome c probed by semisynthesis. Biochemistry. 1999;38:15944–15951.
  • Yamanaka M, Masanari M, Sambongi Y. Conferment of folding ability to a naturally unfolded apocytochrome c through introduction of hydrophobic amino acid residues. Biochemistry. 2011;50:2313–2320.
  • Kobayashi S, Fujii S, Koga A, et al. Pseudomonas aeruginosa cytochrome c551 denaturation by five systematic urea derivatives that differ in the alkyl chain length. Biosci Biotechnol Biochem. 2017;81:1274–1278.
  • Kato C, Nogi Y. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol. 2001;35:223–230.
  • Masanari M, Wakai S, Ishida M, et al. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c5. Extremophiles. 2014;18:617–627.
  • Masanari M, Fujii S, Kawahara K, et al. Comparative study on stabilization mechanism of monomeric cytochrome c5 from deep-sea piezophilic Shewanella violacea. Biosci Biotechnol Biochem. 2016;80:2365–2370.
  • Fujii S, Masanari-Fujii M, Kobayashi S, et al. Commonly stabilized cytochromes c from deep-sea Shewanella and Pseudomonas. Biosci Biotechnol Biochem. 2018;82:792–799.
  • Apel WA, Dugan PR, Tuttle JH. Adenosine 5ʹ-triphosphate formation in Thiobacillus ferrooxidans vesicles by H+ ion gradients comparable to those of environmental conditions. J Bacteriol. 1980;142:295–301.
  • Wakai S, Ohmori A, Kanao T, et al. Purification and biochemical characterization of the F1-ATPase from Acidithiobacillus ferrooxidans NASF-1 and analysis of the atp operon. Biosci Biotechnol Biochem. 2005;69:1884–1891.
  • Wakai S, Kikumoto M, Kanao T, et al. Involvement of sulfide: quinoneoxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem. 2004;68:2519–2528.
  • Wakai S, Tsujita M, Kikumoto M, et al. Purification and characterization of sulfide: quinoneoxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. Biosci Biotechnol Biochem. 2007;71:2735–2742.
  • Zhang S, Yan L, Xing W, et al. Acidithiobacillus ferrooxidans and its potential application. Extremophiles. 2018;22:563–579.
  • Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics. 2009;10:394.
  • Michaux C, Pouyez J, Mayard A, et al. Structural insights into the acidophilic pH adaptation of a novel endo-1,4-β-xylanase from Scytalidium acidophilum. Biochimie. 2010;92:1407–1415.
  • Huang Y, Krauss G, Cottaz S, et al. A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J. 2005;385:581–588.
  • Kanao T, Matsumoto C, Shiraga K, et al. Recombinant tetrathionate hydrolase from Acidithiobacillus ferrooxidans requires exposure to acidic conditions for proper folding. FEMS Microbiol Lett. 2010;309:43–47.
  • Ishii T, Kawaichi S, Nakagawa H, et al. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. Front Microbiol. 2015;6:994.
  • Nakamura R, Takashima T, Kato S, et al. Electrical current generation across a black smoker chimney. Angew Chem Int Ed Engl. 2010;49:7692–7694.
  • Deng X, Dohmae N, Nealson KH, et al. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv. 2018;4:eaao5682.
  • Uchiyama T, Ito K, Mori K, et al. Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol. 2010;76:1783–1788.
  • Mori K, Tsurumaru H, Harayama S. Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng. 2010;110:426–430.
  • Iino T, Ito K, Wakai S, et al. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol. 2015;81:1839–1846.
  • Iino T, Sakamoto M, Ohkuma M. Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans. Int J Syst Evol Microbiol. 2015;65:2865–2869.
  • Wakai S. Metal materials suffer from infectious disease: microbiologically influenced corrosion. Kagakutoseibutsu. 2015;53: 515–520. Japanese.
  • Adams MW, Perler FB, Kelly RM. Extremozymes: expanding the limits of biocatalysis. Nat Biotechnol. 1995;13(7):662–668.
  • Stetter KO. Extremophiles and their adaptation to hot environments. FEBS Lett. 1999;452:22–25.
  • Feller G, Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol. 2003;1:200–208.
  • Dubnovitsky AP, Kapetaniou EG, Papageorgiou AC. Enzyme adaptation to alkaline pH: atomic resolution (1.08 Å) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci. 2005;14:97–110.
  • Graziano G, Merlino A. Molecular bases of protein halotolerance. Biochim Biophys Acta. 2014;1844:850–858.
  • Oren A. Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol. 1983;33:381–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.