760
Views
9
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Pantothenate auxotrophy of Methylobacterium spp. isolated from living plants

, , & ORCID Icon
Pages 569-577 | Received 18 Sep 2018, Accepted 09 Nov 2018, Published online: 26 Nov 2018

References

  • Seco R, Penuelas J, Filella I. Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ. 2007;41:2477–2499.
  • Pichersky E, Noel JP, Dudareva N. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science. 2006;311:808–811.
  • Galbally I, Kirstine W. The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem. 2002;43:195–229.
  • Kawaguchi K, Yurimoto H, Oku M, et al. Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves. PLoS One. 2011;6:e25257.
  • Mercier J, Lindow SE. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol. 2000;66:369–374.
  • Shiraishi K, Oku M, Kawaguchi K, et al. Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy. Sci Rep. 2015;5:9719.
  • Gargallo-Garriga A, Sardans J, Perez-Trujillo M, et al. Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biol. 2016;16:78.
  • Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–1883.
  • Delmotte N, Knief C, Chaffron S, et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA. 2009;106:16428–16433.
  • Senthilkumar M, Madhaiyan M, Sundaram S, et al. Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol Res. 2009;164:92–104.
  • Hornschuh M, Grotha R, Kutschera U. Moss-associated methylobacteria as phytosymbionts: an experimental study. Naturwissenschaften. 2006;93:480–486.
  • Madhaiyan M, Poonguzhali S, Ryu J, et al. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta. 2006;224:268–278.
  • Koenig RL, Morris RO, Polacco JC. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol. 2002;184:1832–1842.
  • Ardanov P, Sessitsch A, Haggman H, et al. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One. 2012;7:e46802.
  • Peel D, Quayle JR. Microbial growth on C1 compounds. I. isolation and characterization of Pseudomonas AM1. Biochem J. 1961;81:465–469.
  • Green PN, Ardley JK. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol. 2018;68:2727–2748.
  • Sy A, Timmers AC, Knief C, et al. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol. 2005;71:7245–7252.
  • Schmidt S, Christen P, Kiefer P, et al. Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology. 2010;156:2575–2586.
  • Van Aken B, Peres CM, Doty SL, et al. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Int J Syst Evol Microbiol. 2004;54:1191–1196.
  • Madhaiyan M, Kim BY, Poonguzhali S, et al. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol. 2007;57:326–331.
  • Schauer S, Kutschera U. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. Plant Signal Behav. 2011;6:510–515.
  • Sy A, Giraud E, Jourand P, et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol. 2001;183:214–220.
  • Raja P, Balachandar D, Sundaram S. Genetic diversity and phylogeny of pink-pigmented facultative methylotrophic bacteria isolated from the phyllosphere of tropical crop plants. Biol Fertil Soils. 2008;45:45–53.
  • Mizuno M, Yurimoto H, Yoshida N, et al. Distribution of pink-pigmented facultative methylotrophs on leaves of vegetables. Biosci Biotechnol Biochem. 2012;76:578–580.
  • Mizuno M, Yurimoto H, Iguchi H, et al. Dominant colonization and inheritance of Methylobacterium sp. strain OR01 on perilla plants. Biosci Biotechnol Biochem. 2013;77:1533–1538.
  • Tani A, Sahin N, Kimbara K. Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata. Int J Syst Evol Microbiol. 2012;62:1647–1652.
  • Shen PH, Wu B. Over-expression of a hydroxypyruvate reductase in Methylobacterium sp. MB200 enhances glyoxylate accumulation. J Ind Microbiol Biotechnol. 2007;34:657–663.
  • Tani A, Sahin N, Matsuyama Y, et al. High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS One. 2012;7:e40784.
  • Urakami T, Araki H, Suzuki K-I, et al. Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. Int J Syst Evol Microbiol. 1993;43:504–513.
  • Delaney NF, Kaczmarek ME, Ward LM, et al. Development of an optimized medium, strain and high-throughput culturing methods for Methylobacterium extorquens. PLoS One. 2013;8:e62957.
  • Shimbo K, Oonuki T, Yahashi A, et al. Precolumn derivatization reagents for high-speed analysis of amines and amino acids in biological fluid using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:1483–1492.
  • Miyatake K, Nakano Y, Kitaoka S. Pantothenate synthetase from Escherichia coli [D-pantoate: β-alanine ligase (AMP-forming), EC 6.3.2.1]. Methods Enzymol. 1979;62:215–219.
  • Herrmann G, Selmer T, Jessen HJ, et al. Two beta‐alanyl‐CoA: ammonia lyases in Clostridium propionicum. FEBS J. 2005;272:813–821.
  • Wang Y, Xu H, White RH. β-Alanine biosynthesis in Methanocaldococcus jannaschii. J Bacteriol. 2014;196:2869–2875.
  • Gruffaz C, Muller EE, Louhichi-Jelail Y, et al. Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine. Appl Environ Microbiol. 2014;80:3541–3550.
  • Coxon KM, Chakauya E, Ottenhof HH, et al. Pantothenate biosynthesis in higher plants. Biochem Soc Trans. 2005;33:743–746.
  • Primerano DA, Burns RO. Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium. J Bacteriol. 1983;153:259–269.
  • Rodionov DA, Hebbeln P, Eudes A, et al. A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol. 2009;191:42–51.
  • Vallari DS, Rock CO. Isolation and characterization of Escherichia coli pantothenate permease (panF) mutants. J Bacteriol. 1985;164:136–142.
  • Schneider F, Krämer R, Burkovski A. Identification and characterization of the main β-alanine uptake system in Escherichia coli. Appl Microbiol Biotechnol. 2004;65:576–582.
  • Sauberlich HE, Baumann CA. A factor required for the growth of Leuconostoc citrovorum. J Biol Chem. 1948;176:165–173.
  • D’Souza G, Waschina S, Pande S, et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution. 2014;68:2559–2570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.