393
Views
1
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Lipase-catalyzed synthesis of ethyl (R)-2-benzyloxy-2-isopropylhydrogenmalonate: a useful combination of chemical synthesis with enzymatic methods

, , , & ORCID Icon
Pages 763-767 | Received 29 Oct 2018, Accepted 20 Nov 2018, Published online: 17 Jan 2019

References

  • Sinz A. Die Bedeutung der Mutterkorn‐Alkaloide als Arzneistoffe. Weit mehr als nur α‐Blocker. Pharm Unserer Zeit. 2008;37:306–309.
  • Somei M, Yokoyama Y, Murakami Y, et al. Recent synthetic studies on the Ergot alkaloids and related compounds. J Cheminform. 2001;32:191–257.
  • Flieger M, Wurst M, Shelby R. Ergot alkaloids-sources, structures and analytical methods. Folia Microbiol. 1997;42:3–30.
  • Lee MR. The history of ergot of rye (Claviceps purpurea) III: 1940-80. JR Coll Physicians Edinburgh. 2010;40:77–80.
  • Parkes JD, Marsden CD, Donaldson I, et al. Bromocriptine treatment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1976;39:184–193.
  • Eadie MJ. Ergot of rye-the first specific for migraine. J Clin Neurosci. 2004;11:4–7.
  • Schiff PL Jr. Ergot and its alkaloids. Am J Pharm Educ. 2006;70:98.
  • Cheng JZ. Nature’s approach toward ring formation and structural diversity in ergot alkaloid biosynthesis. Doctoral dissertation, Massachusetts Institute of Technology, (2011).
  • Stadler PA, Guttmann S, Hauth H, et al. Die Synthese der Alkaloide der Ergotoxin-Gruppe. 70. Mitteilung über Mutterkornalkaloide [1]. Helv Chim Acta. 1969;52:1549–1564.
  • Moldvai I, Temesvári-Major E, Incze M, et al. Enantioefficient synthesis of α-ergocryptine: first direct synthesis of (+)-lysergic acid. J Org Chem. 2004;69:5993–6000.
  • Pogorevc M, Faber K. Biocatalytic resolution of stereically hindered alcohols, carboxylic acids and esters containing fully substituted chiral centers by hydrolytic enzymes. J Mol Catal B. 2000;10:357–376.
  • Sugai T, Higashibayashi S, Hanaya K. Recent examples of the use of biocatalysts with high accessibility and availability in natural product synthesis. Tetrahedron. 2018;74:3469–3487.
  • Hansen TV, Waagen V, Partali V, et al. Co-solvent enhancement of enantioselectivity in lipase-catalysed hydrolysis of racemic esters. A process for production of homochiral C-3 building blocks using lipase B from Candida antarctica. Tetrahedron: Asymmetry. 1995;6:499–504.
  • Kato K, Gong Y, Saito T, et al. Efficient preparation of optically active ketoprofen by Mucor javanicus lipase immobilized on an inorganic support. J Biosci Bioeng. 2000;90:332–334.
  • Zhang LQ, Zhang YD, Xu L, et al. Lipase-catalyzed synthesis of RGD diamide in aqueous water-miscible organic solvents. Enzyme Microb Tech. 2001;29:129–135.
  • Chen Y, Xu JH, Pan J, et al. Catalytic resolution of (RS)-HMPC acetate by immobilized cells of Acinetobacter sp. CGMCC 0789 in a medium with organic cosolvent. J Mol Catal B. 2004;30:203–208.
  • Fernández-Lorente G, Palomo JM, Mateo C, et al. Fernandez-Lafuente, R. Resolution of paroxetine precursor using different lipases: influence of the reaction conditions on the enantioselectivity of lipases. Enzyme Microb Tech. 2004;34:264–269.
  • Zhang W, Ni Y, Sun Z, et al. Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026: a practical process for high enantiopurity and product titer. Process Biochem. 2009;44:1270–1275.
  • Bansode SR, Hardikar MA, Rathod VK. Evaluation of reaction parameters and kinetic modelling for Novozym 435 catalysed synthesis of isoamyl butyrate. J Chem Technol Biotechnol. 2017;92:1306–1314.
  • Villalba M, Verdasco-Martín CM, Dos Santos JC, et al. Operational stabilities of different chemical derivatives of Novozym 435 in an alcoholysis reaction. Enzyme Microb Tech. 2016;90:35–44.
  • Polloni AE, Chiaradia V, Figura EM, et al. Polyesters from macrolactones using commercial lipase NS 88011 and Novozym 435 as Biocatalysts. Appl Biochem Biotech. 2018;184:659–672.
  • Karlsson S. Development of an Enantioselective Novozym 435 mediated acetylation for the preparation of (1 S, 3 R)-3-Acetamidocyclohexane-1-carboxylic acid. Org Process Res Dev. 2016;20:1336–1340.
  • Dong HP, Wang YJ, Zheng YG. Enantioselective hydrolysis of diethyl 3-hydroxyglutarate to ethyl (S)-3-hydroxyglutarate by immobilized Candida antarctica lipase B. J Mol Catal B. 2010;66:90–94.
  • Long WS, Kow PC, Kamaruddin AH, et al. Comparison of kinetic resolution between two racemic ibuprofen esters in an enzymic membrane reactor. Process Biochem. 2005;40:2417–2425.
  • Basheer S, Mogi K, Nakajima M. Surfactant‐modified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol Bioeng. 1995;45:187–195.
  • Zaks A, Klibanov A,M. Enzymatic catalysis in nonaqueous solvents. J Biol Chem. 1988;263:3194–3201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.