410
Views
19
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

LncRNA FENDRR promotes high-glucose-induced proliferation and angiogenesis of human retinal endothelial cells

, , , , &
Pages 869-875 | Received 19 Nov 2018, Accepted 03 Jan 2019, Published online: 30 Jan 2019

References

  • Chen Z, Liu G, Xiao Y, et al. Adrenomedullin(22-52) suppresses high-glucose-induced migration, proliferation, and tube formation of human retinal endothelial cells. Mol Vis. 2014;20:259–269. PubMed PMID: PMC3945807
  • Chen X, Li J, Li M, et al. KH902 suppresses high glucose-induced migration and sprouting of human retinal endothelial cells by blocking VEGF and PIGF. Diabetes Obes Metab. 2013;15(3):224–233.
  • Yang X, Song JH, Cheng Y, et al. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut. 2014 Jun;63(6):881–890. PubMed PMID: 24000294; PubMed Central PMCID: PMCPmc4612639. eng.
  • Li CP, Wang SH, Wang WQ, et al. Long noncoding RNA-Sox2OT knockdown alleviates diabetes mellitus-induced retinal ganglion cell (RGC) injury. Cell Mol Neurobiol. 2017 Mar;37(2):361–369. 10.1007/s10571-016-0380-1. PubMed PMID: 27193103; eng
  • Gong Q, Su G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep. 2017 Dec 22;37(6). PubMed PMID: 29074557; PubMed Central PMCID: PMCPmc5705777. eng. DOI: 10.1042/bsr20171157
  • Jae N, Dimmeler S. Long noncoding RNAs in diabetic retinopathy. Circ Res. 2015 Mar 27;116(7):1104–1106. PubMed PMID: 25814678; eng.
  • Zhang J, Chen M, Chen J, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep. 2017 Apr 30;37(2): pii: BSR20170036. PubMed PMID: 28246353; PubMed Central PMCID: PMCPmc5408653. eng
  • Sun Y, Liu Y. LncRNA HOTTIP improves diabetic retinopathy by regulating the p38-MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22(10):2941–2948.
  • Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013 Jan 28;24(2):206–214. PubMed PMID: 23369715; PubMed Central PMCID: PMCPmc4149175. eng.
  • Li Y, Zhang W, Liu P, et al. Long non-coding RNA FENDRR inhibits cell proliferation and is associated with good prognosis in breast cancer. Onco Targets Ther. 2018;11:1403–1412.
  • Zhang G, Han G, Zhang X, et al. Long non-coding RNA FENDRR reduces prostate cancer malignancy by competitively binding miR-18a-5p with RUNX1. Biomarkers. 2018;23(5):435–445.
  • Xu T, Huang M, Xia R, et al. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol. 2014;7:63.
  • Dey BK, Mueller AC, Dutta A. Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription. 2014; 5(4). PubMed PMID: 25483404; PubMed Central PMCID: PMCPmc4581346. eng. DOI:10.4161/21541272.2014.944014
  • Miao L, Huang Z, Zengli Z, et al. Loss of long noncoding RNA FOXF1-AS1 regulates epithelial-mesenchymal transition, stemness and metastasis of non-small cell lung cancer cells. Oncotarget. 2016 Oct 18;7(42):68339–68349. PubMed PMID: 27577075; PubMed Central PMCID: PMCPmc5356559. eng.
  • Kun-Peng Z, Chun-Lin Z, Xiao-Long M. Antisense lncRNA FOXF1-AS1 promotes migration and invasion of osteosarcoma cells through the FOXF1/MMP-2/-9 pathway. Int J Biol Sci. 2017;139:1180–1191. PubMed PMID: PMC5666333.
  • Ren X, Ustiyan V, Pradhan A, et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res. 2014 Sep 26;115(8):709–720. PubMed PMID: 25091710; PubMed Central PMCID: PMCPmc4810682. eng.
  • Wu Y, Zhang Q, Zhang R. Kaempferol targets estrogen-related receptor alpha and suppresses the angiogenesis of human retinal endothelial cells under high glucose conditions. Exp Ther Med. 2017 Dec;14(6):5576–5582. PubMed PMID: 29285095; PubMed Central PMCID: PMCPmc5740587. eng.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408.
  • Qiu F, Tong H, Wang Y, et al. Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin. Biosci Biotechnol Biochem. 2018 Aug;82(8):1366–1376. PubMed PMID: 29658404; eng.
  • Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017 Jan 1;58(1):470–480. PubMed PMID: 28122089; eng.
  • Qiu GZ, Tian W, Fu HT, et al. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochem Biophys Res Commun. 2016 Feb 26;471(1):135–141. PubMed PMID: 26845358; eng.
  • Liu JY, Yao J, Li XM, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 2014;5(10):e1506. PubMed PMID: PMC4649539.
  • Ozturk BT, Bozkurt B, Kerimoglu H, et al. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol Vis. 2009;15:1906–1914. PubMed PMID: PMC2751798

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.