564
Views
13
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Characterization of a novel thermostable carboxylesterase from thermoalkaliphilic bacterium Bacillus thermocloaceae

, &
Pages 882-891 | Received 06 Dec 2018, Accepted 12 Jan 2019, Published online: 10 Feb 2019

References

  • Nardini M, Dijkstra BW. α/β hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol. 1999;9:732–737.
  • Charbonneau DM, Meddeb-Mouelhi F, Beauregard M. A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family. J Biochem. 2010;148:299–308.
  • Masse L, Kennedy KJ, Chou S. Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. Bioresour Technol. 2001;77:145–155.
  • Singh AK, Mukhopadhyay M. Overview of fungal lipase: a review. Appl Biochem Biotechnol. 2012;166:486–520.
  • Levisson M, van der Oost J, Kengen SWM. Carboxylic ester hydrolases from hyperthermophiles. Extremophiles. 2009;13:567–581.
  • Niehaus F, Bertoldo C, Kähler M, et al. Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol. 1999;51:711–729.
  • Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol. 1999;53:315–351.
  • Panda T, Gowrishankar BS. Production and applications of esterases. Appl Microbiol Biotechnol. 2005;67:160–169.
  • Li G, Wang K, Liu YH. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact. 2008;7:38.
  • Krahe M, Antranikian G, Märkl H. Fermentation of extremophilic microorganisms. FEMS Microbiol Rev. 1996;18:271–285.
  • Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review. Bioresour Technol. 2003;89:17–34.
  • Bruins ME, Janssen AEM, Boom RM. Thermozymes and their applications. Appl Biochem Biotechnol. 2001;90:155–186.
  • Rao L, Xue Y, Zheng Y, et al. A novel alkaliphilic Bacillus esterase belongs to the 13th bacterial lipolytic enzyme family. PLoS One. 2013;8:e60645.
  • Asoodeh A, Ghanbari T. Characterization of an extracellular thermophilic alkaline esterase produced by Bacillus subtilis DR8806. J Mol Catal B Enzym. 2013;85–86:49–55.
  • Montoro-García S, Martínez-Martínez I, Navarro-Fernández J, et al. Characterization of a novel thermostable carboxylesterase from Geobacillus kaustophilus HTA426 shows the existence of a new carboxylesterase family. J Bacteriol. 2009;191:3076–3085.
  • Ewis HE, Abdelal AT, Lu C-D. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene. 2004;329:187–195.
  • Wang B, Wang A, Cao Z, et al. Characterization of a novel highly thermostable esterase from the gram-positive soil bacterium Streptomyces lividans TK64. Biotechnol Appl Biochem. 2015;63:334–343.
  • Li W, Shi H, Ding H, et al. Characterization of two novel thermostable esterases from Thermoanaerobacterium thermosaccharolyticum. Protein Expr Purif. 2018;152:64–70.
  • Zhang T, Chen H, Ni Z, et al. Expression and characterization of a new thermostable esterase from Clostridium thermocellum. Appl Biochem Biotechnol. 2015;177:1437–1446.
  • Demharter W, Hensel R. Bacillus thermocloaceae sp. nov., a new thermophilic species from sewage sludge. Syst Appl Microbiol. 1989;11:272–276.
  • Bender ML, Turnquest BW. The imidazole-catalyzed hydrolysis of p-nitrophenyl acetate. J Am Chem Soc. 1957;79:1652–1655.
  • Kirsch JF, Jencks WP. Base catalysis of imidazole catalysis of ester hydrolysis. J Am Chem Soc. 1964;86:833–837.
  • Kakugawa S, Fushinobu S, Wakagi T, et al. Characterization of a thermostable carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima. Appl Microbiol Biotechnol. 2007;74:585–591.
  • Bornscheuer UT. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev. 2002;26:73–81.
  • Mnisi SM, Louw ME, Theron J. Cloning and characterization of a carboxylesterase from Bacillus coagulans 81-11. Curr Microbiol. 2005;50:196–201.
  • Kim J, Deng L, Hong E, et al. Cloning and characterization of a novel thermostable esterase from Bacillus gelatini KACC 12197. Protein Expr Purif. 2015;116:90–97.
  • Liu L, Yang H, Shin H-D, et al. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered. 2013;4:212–223.
  • Arpigny JL, Jaeger K-E. Bacterial lipolytic enzymes: classification and properties. Biochem J. 1999;343:177–183.
  • Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol. 2016;63:179–192.
  • Zhu Y, Li J, Cai H, et al. Characterization of a new and thermostable esterase from a metagenomic library. Microbiol Res. 2013;168:589–597.
  • Hess M, Katzer M, Antranikian G. Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles. 2008;12:351–364.
  • Correia MAS, Prates JAM, Brás J, et al. Crystal structure of a cellulosomal family 3 carbohydrate esterase from Clostridium thermocellum provides insights into the mechanism of substrate recognition. J Mol Biol. 2008;379:64–72.
  • Carrasco-Lopez C, Godoy C, de Las Rivas B, et al. Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J Biol Chem. 2009;284:4365–4372.
  • Zhu Y, Zheng W, Ni H, et al. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6. J Basic Microbiol. 2015;55:1219–1231.
  • López G, Chow J, Bongen P, et al. A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Appl Microbiol Biotechnol. 2014;98:8603–8616.
  • Heikinheimo P, Goldman A, Jeffries C, et al. Of barn owls and bankers: a lush variety of α/β hydrolases. Structure. 1999;7:R141–R146.
  • Labow RS, Meek E, Matheson LA, et al. Human macrophage-mediated biodegradation of polyurethanes: assessment of candidate enzyme activities. Biomaterials. 2002;23:3969–3975.
  • Doorn JA, Sorenson RC, Billecke SS, et al. Evidence that several conserved histidine residues are required for hydrolytic activity of human paraoxonase/arylesterase. Chem Biol Interact. 1999;119-120:235–241.
  • Amaki Y, Edgard ET, Ueda S, et al. Purification and properties of a thermostable esterase of Bacillus stearothermophilus produced by recombinant Bacillus brevis. Biosci Biotechnol Biochem. 1992;56:238–241.
  • Liu S-Q, Holland R, Crow VL. Purification and properties of intracellular esterases from Streptococcus thermophilus. Int Dairy J. 2001;11:27–35.
  • Tian R, Chen H, Ni Z, et al. Expression and characterization of a novel thermo-alkalistable lipase from hyperthermophilic bacterium Thermotoga maritima. Appl Biochem Biotechnol. 2015;176:1482–1497.
  • Pliego J, Mateos CJ, Rodriguez J, et al. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. Sensors. 2015;15:2798–2811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.