780
Views
6
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Bacteria with natural chemotaxis towards methanol revealed by chemotaxis fishing technique

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2163-2171 | Received 20 May 2019, Accepted 24 Jun 2019, Published online: 04 Jul 2019

References

  • Engelmann TW. Bacterium photometricum Pflugers. Arch Eur J Physiol. 1883;30(1):95–124.
  • Falke JJ, Hazelbauer GL. Transmembrane signaling in bacterial chemoreceptors. Tr Biochem Sci. 2001;26:257–265.
  • Hazelbauer GL, Falke JJ, Parkinson JS. Bacterial chemoreceptors: high-performance signaling in networked arrays. Tr Biochem Sci. 2008;33(1):9–19.
  • Sourjik V, Armitage JP. Spatial organization in bacterial chemotaxis. Embo J. 2010;29(16):2724–2733.
  • Parkinson JS, Ames P, Studdert CA. Collaborative signaling by bacterial chemoreceptors. Curr Opin Microbiol. 2005;8(2):116–121.
  • Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69(1):183–215.
  • Li M, Hazelbauer GL. Core unit of chemotaxis signaling complexes. Proc Natl Acad Sci. 2011;108(23):9390–9395.
  • Antommattei FM, Munzner JB, Weis RM. Ligand-specific activation of Escherichia coli chemoreceptor trans-methylation. J Bacteriol. 2004;186(22):7556–7563.
  • Laca A, Sáenz MC, Paredes B, et al. Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. J Food Eng. 2010;97(2):243–252.
  • McKellar JL, Minnell JJ, Gerth ML. A high‐throughput screen for ligand binding reveals the specificities of three amino acid chemoreceptors from Pseudomonas syringae pv. actinidiae. Mol Microbiol. 2015;96(4):694–707.
  • Scharf BE, Hynes MF, Alexandre GM. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol Biol. 2016;90(6):549–559.
  • García V, Reyes-Darias JA, Martín-Mora D, et al. Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol. 2015;81(16):5449–5457.
  • Parales RE, Luu RA, Chen GY, et al. Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. Microbiology. 2013;159(6):1086–1096.
  • Hou S, Belisle C, Lam S, et al. Globin-coupled oxygen sensor from the facultatively alkaliphilic Bacillus halodurans C-125. Extremophiles. 2001;5(5):351–354.
  • Fall R, Benson AA. Leaf methanol the simplest natural product from plants. Trends Plant Sci. 1996;1(9):296–301.
  • Harholt J, Suttangkakul A, Scheller HV. Biosynthesis of pectin. Plant Physiol. 2010;153(2):384–395.
  • Delmotte N, Knief C, Chaffron S, et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci. 2009;106(38):16428–16433.
  • Kutschera U. Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav. 2007;2(2):74–78.
  • Schauer S, Kutschera U. Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory Biosci. 2008;127(1):23–29.
  • Dourado MN, Bogas AC, Pomini AM, et al. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol. 2013;44(4):1331–1339.
  • Madhaiyan M, Poonguzhali S, Lee HS, et al. Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol Fertil Soils. 2005;41(5):350–358.
  • Tani A, Sahin N, Matsuyama Y, et al. Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata. Int J Syst Evol Microbiol. 2012;62:1647–1652.
  • Tani A, Takai Y, Suzukawa I, et al. Practical application of methanol-mediated mutualistic symbiosis between Methylobacterium species and a roof greening moss, Racomitrium japonicum. PloS ONE. 2012;7(3):e33800–e33800.
  • Tani A, Ogura Y, Hayashi T, et al. Complete genome sequence of Methylobacterium aquaticum strain 22A, isolated from Racomitrium japonicum moss. Genome Announc. 2015;3(2):e00266–15.
  • Alamgir KM, Masuda S, Fujitani Y, et al. Production of ergothioneine by Methylobacterium species. Front Microbiol. 2015;6:1185.
  • Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester: John Wiley and Sons; 1991. p. 115–175.
  • Chun J, Lee JH, Jung Y, et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol. 2007;57(10):2259–2261.
  • Al Atrouni A, Joly-Guillou ML, Hamze M, et al. Reservoirs of non-baumannii Acinetobacter species. Front Microbiol. 2016;7:49.
  • Nemec A, Musílek M, Šedo O, et al. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int J Syst Evol Microbiol. 2010;60(4):896–903.
  • Duine JA, Van Zeeland JK. Glucose dehydrogenase from Acinetobacter calcoaceticus. FEBS Lett. 1979;108(2):443–446.
  • Duine JA, Jzn JF. Quinoprotein alcohol dehydrogenase from a non-methylotroph, Acinetobacter calcoaceticus. Microbiology. 1981;122(2):201–209.
  • Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines—new high-performance thermosetting resins: synthesis and properties. Prog Polym Sci. 2007;32(11):1344–1391.
  • Álvarez-Pérez S, Lievens B, Jacquemyn H, et al. Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol. 2013;63(4):1532–1539.
  • Indiragandhi P, Anandham R, Madhaiyan M, et al. Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: plutellidae). Curr Microbiol. 2008;56(4):327–333.
  • Kang SM, Joo GJ, Hamayun M, et al. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett. 2009;31(2):277–281.
  • Kuklinsky‐Sobral J, Araújo WL, Mendes R, et al. Isolation and characterization of soybean‐associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6(12):1244–1251.
  • Peix A, Lang E, Verbarg S, et al. Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Syst Appl Microbiol. 2009;32(5):334–341.
  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, et al. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol. 2011;21(6):556–566.
  • Sachdev D, Nema P, Dhakephalkar P, et al. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol Res. 2010;165(8):627–638.
  • Nemec A, Musilek M, Maixnerova M, et al. Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol. 2009;59(1):118–124.
  • Vaz-Moreira I, Novo A, Hantsis-Zacharov E, et al. Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. Int J Syst Evol Microbiol. 2011;61(12):2837–2843.
  • Gaddy JA, Actis LA. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009;4(3):273–278.
  • Green PN, Gillis M. Classification of Pseudomonas aminovorans and some related methylated amine utilizing bacteria. Microbiology. 1989;135(7):2071–2076.
  • Jenkins O, Jones D. Taxonomic studies on some gram-negative methylotrophic bacteria. Microbiology. 1987;133(2):453–473.
  • Pacheco CC, Passos JF, Moradas-Ferreira P, et al. Strain PM2, a novel methylotrophic fluorescent Pseudomonas sp. FEMS Microbiol Lett. 2003;227(2):279–285.
  • Wallace PL, Hollis DG, Weaver RE, et al. Biochemical and chemical characterization of pink-pigmented oxidative bacteria. J Clin Microbiol. 1990;28(4):689–693.
  • Elasri M, Delorme S, Lemanceau P, et al. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol. 2001;67(3):1198–1209.
  • Loper JE, Hassan KA, Mavrodi DV, et al. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012;8(7):e1002784.
  • Raaijmakers JM, de Bruijn I, de Kock MJ. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact. 2006;19(7):699–710.
  • Rosenberg C, Casse-Delbart F, Dusha I, et al. Megaplasmids in the plant-associated bacteria Rhizobium meliloti and Pseudomonas solanacearum. J Bacteriol. 1982;150(1):402–406.
  • Ding L, Yokota A. Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water. J Gen Appl Microbiol. 2010;56(3):267–271.
  • Jørgensen NO, Brandt KK, Nybroe O, et al. Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int J Syst Evol Microbiol. 2009;59(9):2195–2199.
  • Schleheck D, Knepper TP, Fischer K, et al. Mineralization of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl Environ Microbiol. 2004;70(7):4053–4063.
  • Shetty AR, de Gannes V, Obi CC, et al. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4. Stand Genomic. Sci. 2015;10(1):1.
  • James EK, Gyaneshwar P, Mathan N, et al. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact. 2002;15(9):894–906.
  • Pedrosa FO, Monteiro RA, Wassem R, et al. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet. 2011;7(5):e1002064.
  • Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973;74(1):77–91.
  • Adler J, Templeton B. The effect of environmental conditions on the motility of Escherichia coli. Microbiology. 1967;46(2):175–184.
  • Chaparro JM, Badri DV, Bakker MG, et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE. 2013;8(2):e55731.
  • Nihorimbere V, Ongena M, Smargiassi M, et al. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotech Agro Soci Environ. 2011;15(2):327.
  • Yoshida N, Inaba S, Takagi H. Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4. J Biosci Bioeng. 2014;117(1):28–32.
  • Gallego V, García MT, Ventosa A. Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int J Syst Evol Microbiol. 2005;55(4):1429–1433.
  • Hiraishi A, Furuhata K, Matsumoto A, et al. Phenotypic and genetic diversity of chlorine resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol. 1995;61(6):2099–2107.
  • Kort EN, Goy MF, Larsen SH, et al. Methylation of a membrane protein involved in bacterial chemotaxis. Proc Nat Acad Sci. 1975;72:3939–3943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.