908
Views
22
CrossRef citations to date
0
Altmetric
Award Review

Reconstitution of biosynthetic machinery of fungal natural products in heterologous hosts

Pages 433-444 | Received 10 Oct 2019, Accepted 31 Oct 2019, Published online: 18 Nov 2019

References

  • Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11:21–32.
  • Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep. 2019;36:1313–1332.
  • Medema MH, Kottmann R, Yilmaz P, et al. Minimum information about a biosynthetic gene cluster. Nat Chem Biol. 2015;11:625–631. https://mibig.secondarymetabolites.org/
  • Yu JJ. Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins (Basel). 2012;4:1024–1057.
  • Bond C, Tang Y, Li L. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases. Fungal Genet Biol. 2016;89:52–61.
  • Fujii I. Heterologous expression systems for polyketide synthases. Nat Prod Rep. 2009;26:155–169.
  • Lazarus CM, Williams K, Bailey AM. Reconstructing fungal natural product biosynthetic pathways. Nat Prod Rep. 2014;31:1339–1347.
  • Minami A, Liu CW, Oikawa H. Total biosynthesis of fungal indole diterpenes using cell factories. Heterocycles. 2016;92:397–421.
  • Comprehensive natural products III: chemistry and Biology. In: Begley TP, Liu H–W, editors. Biosynthesis of indole diterpenes. Vol. 2. Elsevier Science;  in press.
  • Saikia S, Nicholson MJ, Young C, et al. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res. 2008;112:184–199.
  • Jin FJ, Maruyama J, Juvvadi PR, et al. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett. 2004;239:79–85.
  • Tagami K, Liu C, Minami A, et al. Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae. J Am Chem Soc. 2013;135:1260–1263.
  • Tang MC, Lin HC, Li DH, et al. Discovery of unclustered fungal indole diterpene biosynthetic pathways through combinatorial pathway reassembly in engineered yeast. J Am Chem Soc. 2015;137:13724–13727.
  • Xiong QB, Zhu XW, Wilson WK, et al. Enzymatic synthesis of an indole diterpene by an oxidosqualene cyclase: mechanistic, biosynthetic, and phylogenetic implications. J Am Chem Soc. 2003;125:9002–9003.
  • Tagami K, Minami A, Fujii R, et al. Rapid reconstitution of biosynthetic machinery for fungal metabolites in Aspergillus oryzae: total biosynthesis of aflatrem. ChemBioChem. 2014;15:2076–2080.
  • Liu C, Minami A, Dairi T, et al. Biosynthesis of shearinine: diversification of a tandem prenyl moiety of fungal indole diterpenes. Org Lett. 2016;18:5026–5029.
  • Motoyama T, Hayashi T, Hirota H, et al. Terpendole E, a Kinesin Eg5 inhibitor, is a key biosynthetic intermediate of indole-diterpenes in the producing fungus Chaunopycnis alba. Chem Biol. 2012;19:1611–1619.
  • Liu C, Tagami K, Minami A, et al. Reconstitution of biosynthetic machinery for the synthesis of the highly elaborated indole diterpene penitrem. Angew Chem Int Ed. 2015;54:5748–5752.
  • Saikia S, Takemoto D, Tapper BA, et al. Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloe festucae. FEBS Lett. 2012;586:2563–2569.
  • Huang XH, Nishida H, Tomoda H, et al. Terpendoles, novel acat inhibitors produced by Albophoma yamanashiensis 2. structure elucidation of Terpendole-A, Terpendole-B, Terpendole-C and Terpendole-D. J Antibiot. 1995;48:5–11.
  • Uchida R, Kim YP, Nagamitsu T, et al. Structure elucidation of fungal sespendole, an inhibitor of lipid droplet synthesis in macrophages. J Antibiot. 2006;59:338–344.
  • Jiang U, Ozaki T, Liu C, et al., unpublished results.
  • Kudo K, Liu CW, Matsumoto T, et al. Heterologous biosynthesis of fungal indole sesquiterpene sespendole. ChemBioChem. 2018;19:1492–1497.
  • Matsuda Y, Abe I. Biosynthesis of fungal meroterpenoids. Nat Prod Rep. 2016;33:26–53.
  • Matsuda Y, Bai TX, Phippen CBW, et al. Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nat Commun. 2018;9:2587.
  • Wang WG, Du LQ, Sheng SL, et al. Genome mining for fungal polyketide-diterpenoid hybrids: discovery of key terpene cyclases and multifunctional P450s for structural diversification. Org Chem Front. 2019;6:571–578.
  • Hansen BG, Mnich E, Nielsen KF, et al. Involvement of a natural fusion of a cytochrome P450 and a hydrolase in mycophenolic acid biosynthesis. Appl Environ Microbiol. 2012;78:4908–4913.
  • Takino J, Kozaki T, Sato Y, et al. Unveiling biosynthesis of the phytohormone abscisic acid in fungi: unprecedented mechanism of core scaffold formation catalyzed by an unusual sesquiterpene synthase. J Am Chem Soc. 2018;140:12392–12395.
  • Takino J, Kozaki T, Ozaki T, et al. Elucidation of biosynthetic pathway of a plant hormone abscisic acid in phytopathogenic fungi. Biosci Biotech Bioch. 2019;83:1642–1649.
  • Fujii R, Minami A, Tsukagoshi T, et al. Total biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase alpha: heterologous expression of four biosynthetic genes in Aspergillus oryzae. Biosci Biotechnol Biochem. 2011;75:1813–1817.
  • Wang GQ, Chen GD, Qin SY, et al. Biosynthetic pathway for furanosteroid demethoxyviridin and identification of an unusual pregnane side-chain cleavage. Nat Commun. 2018;9:1838.
  • Heneghan MN, Yakasai AA, Halo LM, et al. First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. ChemBioChem. 2010;11:1508–1512.
  • Kasahara K, Miyamoto T, Fujimoto T, et al. Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. ChemBioChem. 2010;11:1245–1252.
  • Fujii R, Ugai T, Ichinose H, et al. Reconstitution of biosynthetic machinery of fungal polyketides: unexpected oxidations of biosynthetic intermediates by expression host. Biosci Biotech Bioch. 2016;80:426–431.
  • Davison J, Al Fahad A, Cai M, et al. Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. Proc Natl Acad Sci USA. 2012;109:7642–7647.
  • Ye Y, Minami A, Igarashi Y, et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide Ustiloxin B in filamentous fungi. Angew Chem Int Ed. 2016;55:8072–8075.
  • Bonsch B, Belt V, Bartel C, et al. Identification of genes encoding squalestatin S1 biosynthesis and in vitro production of new squalestatin analogues. Chem Commun. 2016;52:6777–6780.
  • Fujii I, Yoshida N, Shimomaki S, et al. An iterative Type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regiospecific octa-methylation. Chem Biol. 2005;12:1301–1309.
  • Kasahara K, Fujii I, Oikawa H, et al. Expression of Alternaria solani PKSF generates a set of complex reduced-type polyketides with different carbon-lengths and cyclization. ChemBioChem. 2006;7:920–924.
  • Ugai T, Minami A, Gomi K, et al. Genome mining approach for harnessing the cryptic gene cluster in Alternaria solani: production of PKS-NRPS hybrid metabolite, didymellamide B. Tetrahedron Lett. 2016;57:2793–2796.
  • Minami A, Ozaki T, Liu C, et al. Cyclopentane-forming di/sesterterpene synthases: widely distributed enzymes in bacteria, fungi, and plants. Nat Prod Rep. 2018;35:1330–1346.
  • Wiemann P, Sieber CM, von Bargen KW, et al. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 2013;9:e1003475.
  • Toyomasu T, Tsukahara M, Kaneko A, et al. Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Proc Natl Acad Sci USA. 2007;104:3084–3088.
  • Toyomasu T, Kaneko A, Tokiwano T, et al. Biosynthetic gene-based secondary metabolite screening: a new diterpene, methyl phomopsenonate, from the fungus Phomopsis amygdali. J Org Chem. 2009;74:1541–1548.
  • Toyomasu T, Tsukahara M, Kenmoku H, et al. Transannular proton transfer in the cyclization of geranylgeranyl diphosphate to fusicoccadiene, a biosynthetic intermediate of fusicoccins. Org Lett. 2009;11:3044–3047.
  • Shinde SS, Minami A, Chen Z, et al. Cyclization mechanism of phomopsene synthase: mass spectrometry based analysis of various site-specifically labeled terpenes. J Antibiot (Tokyo). 2017;70:632–638.
  • Chiba R, Minami A, Gomi K, et al. Identification of ophiobolin F synthase by a genome mining approach: a sesterterpene synthase from Aspergillus clavatus. Org Lett. 2013;15:594–597.
  • Ye Y, Minami A, Mandi A, et al. Genome mining for sesterterpenes using bifunctional terpene synthases reveals a unified intermediate of di/sesterterpenes. J Am Chem Soc. 2015;137:11846–11853.
  • Sato H, Narita K, Minami A, et al. Theoretical study of sesterfisherol biosynthesis: computational prediction of key amino acid residue in terpene synthase. Sci Rep. 2018;8:2473.
  • Huang AC, Kautsar SA, Hong YJ, et al. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci USA. 2017;114:E6005–E6014.
  • Narita K, Sato H, Minami A, et al. Focused genome mining of structurally related sesterterpenes: enzymatic formation of enantiomeric and diastereomeric products. Org Lett. 2017;19:6696–6699.
  • Bian G, Han Y, Hou A, et al. Releasing the potential power of terpene synthases by a robust precursor supply platform. Metab Eng. 2017;42:1–8.
  • Matsuda Y, Mitsuhashi T, Lee S, et al. Astellifadiene: structure determination by NMR spectroscopy and crystalline sponge method, and elucidation of its biosynthesis. Angew Chem Int Ed. 2016;55:5785–5788.
  • Matsuda Y, Mitsuhashi T, Quan Z, et al. Molecular basis for stellatic acid biosynthesis: a genome mining approach for discovery of sesterterpene synthases. Org Lett. 2015;17:4644–4647.
  • Rinkel J, Steiner S, Bian G, et al. A family of related fungal and bacterial di- and sesterterpenes: studies on fusaterpenol and variediene. ChemBioChem. 2019.
  • Qin B, Matsuda Y, Mori T, et al. An unusual chimeric diterpene synthase from Emericella variecolor and its functional conversion into a sesterterpene synthase by domain swapping. Angew Chem Int Ed. 2016;55:1658–1661.
  • Shiina T, Nakagawa K, Fujisaki Y, et al. Biosynthetic study of conidiation-inducing factor conidiogenone: heterologous production and cyclization mechanism of a key bifunctional diterpene synthase. Biosci Biotech Bioch. 2019;83:192–201.
  • Gao L, Narita K, Ozaki T, et al. Identification of novel sesterterpenes by genome mining of phytopathogenic fungi Phoma and Colletotrichum sp. Tetrahedron Lett. 2018;59:1136–1139.
  • Mitsuhashi T, Rinkel J, Okada M, et al. Mechanistic characterization of two chimeric sesterterpene synthases from Penicillium. Chem Eur J. 2017;23:10053–10057.
  • Okada M, Matsuda Y, Mitsuhashi T, et al. Genome-based discovery of an unprecedented cyclization mode in fungal sesterterpenoid biosynthesis. J Am Chem Soc. 2016;138:10011–10018.
  • Noike M, Ono Y, Araki Y, et al. Molecular breeding of a fungus producing a precursor diterpene suitable for semi-synthesis by dissection of the biosynthetic machinery. Plos One. 2012;7:e42090.
  • Tazawa A, Ye Y, Ozaki T, et al. Total biosynthesis of brassicicenes: identification of a key enzyme for skeletal diversification. Org Lett. 2018;20:6178–6182.
  • Narita K, Chiba R, Minami A, et al. Multiple oxidative modifications in the ophiobolin biosynthesis: P450 oxidations found in genome mining. Org Lett. 2016;18:1980–1983.
  • Narita K, Minami A, Ozaki T, et al. Total biosynthesis of antiangiogenic agent (-)-terpestacin by artificial reconstitution of the biosynthetic machinery in Aspergillus oryzae. J Org Chem. 2018;83:7042–7048.
  • Rinkel J, Steiner ST, Dickschat JS. Diterpene biosynthesis in actinomycetes: studies on cattleyene synthase and phomopsene synthase. Angew Chem Int Ed. 2019;58:9230–9233.
  • Masuya T, Tsunematsu Y, Hirayama Y, et al. Biosynthesis of lagopodins in mushroom involves a complex network of oxidation reactions. Org Biomol Chem. 2019;17:234–239.
  • Brandt P, Garcia-Altares M, Nett M, et al. Induced chemical defense of a mushroom by a double-bond-shifting polyene synthase. Angew Chem Int Ed. 2017;56:5937–5941.
  • Nofiani R, de Mattos-shipley K, Lebe KE, et al. Strobilurin biosynthesis in basidiomycete fungi. Nature Commun. 2018;9:3940.
  • Tang MC, Fischer CR, Chari JV, et al. Thioesterase-catalyzed aminoacylation and thiolation of polyketides in fungi. J Am Chem Soc. 2019;141:8198–8206.
  • Lorenzen K, Anke T. Basidiomycetes as a source for new bioactive natural products. Curr Org Chem. 1998;2:329–364.
  • Martin F, Cullen D, Hibbett D, et al. Sequencing the fungal tree of life. New Phytol. 2011;190:818–821.
  • Quin MB, Flynn CM, Schmidt-Dannert C. Traversing the fungal terpenome. Nat Prod Rep. 2014;31:1449–1473.
  • Kupfer DM, Drabenstot SD, Buchanan KL, et al. Introns and splicing elements of five diverse fungi. Eukaryot Cell. 2004;3:1088–1100.
  • Yamane M, Minami A, Liu C, et al. Biosynthetic machinery of diterpene pleuromutilin isolated from basidiomycete fungi. ChemBioChem. 2017;18:2317–2322.
  • Nagamine S, Liu C, Nishishita J, et al. Ascomycete Aspergillus oryzae is an efficient expression host for production of basidiomycete terpenes by using genomic DNA sequences. Appl Environ Microb. 2019;85:e00409–19.
  • Quin MB, Flynn CM, Wawrzyn GT, et al. Mushroom hunting by using bioinformatics: application of a predictive framework facilitates the selective identification of sesquiterpene synthases in basidiomycota. ChemBioChem. 2013;14:2480–2491.
  • Katayama T, Tanaka Y, Okabe T, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett. 2016;38:637–642.
  • Yang YL, Zhang SS, Ma K, et al. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi. Angew Chem Int Ed. 2017;56:4749–4752.
  • Liu C, Minami A, Ozaki T, et al. Efficient reconstitution of Basidiomycota diterpene erinacine gene cluster in Ascomycota host Aspergillus oryzae based on genomic DNA sequences. J Am Chem Soc. 2019;141:15519–15523.
  • Wick J, Heine D, Lackner G, et al. A fivefold parallelized biosynthetic process secures chlorination of Armillaria mellea (Honey Mushroom) Toxins. Appl Environ Microb. 2016;82:1196–1204.
  • Oka T, Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. Febs J. 2006;273:2645–2657.
  • Katayama T, Nakamura H, Zhang Y, et al. Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae. Appl Environ Microb. 2019;85:e01896–18.
  • Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.