307
Views
8
CrossRef citations to date
0
Altmetric
Food & Nutrition Science

β-lactolin, a whey-derived glycine―threonine―tryptophan―tyrosine lactotetrapeptide, improves prefrontal cortex-associated reversal learning in mice

ORCID Icon, &
Pages 1039-1046 | Received 31 Oct 2019, Accepted 04 Jan 2020, Published online: 11 Jan 2020

References

  • Camfield DA, Owen L, Scholey AB, et al. Dairy constituents and neurocognitive health in ageing. Br J Nutr. 2011 Jul;106(2):159–174. PubMed PMID: 21338538.
  • Crichton GE, Murphy KJ, Bryan J. Dairy intake and cognitive health in middle-aged South Australians. Asia Pac J Clin Nutr. 2010;19(2):161–171. PubMed PMID: 20460228; eng.
  • Ozawa M, Ninomiya T, Ohara T, et al. Dietary patterns and risk of dementia in an elderly Japanese population: the Hisayama Study. Am J Clin Nutr. 2013 May;97(5):1076–1082. PubMed PMID: 23553168.
  • Ano Y, Ozawa M, Kutsukake T, et al. Preventive effects of a fermented dairy product against Alzheimer’s disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS One. 2015;10(3):e0118512. PubMed PMID: 25760987; PubMed Central PMCID: PMCPMC4356537. eng.
  • Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002 Aug 15;35(4):625–641. PubMed PMID: 12194864; eng.
  • O’Keefe J. Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus. 1999;9(4):352–364. PubMed PMID: 10495018; eng. DOI:10.1002/(sici)1098-1063(1999)9:4<352::Aid-hipo3>3.0.Co;2-1.
  • Logue SF, Gould TJ. The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacol Biochem Behav. 2014 Aug;123:45–54. PubMed PMID: 23978501; PubMed Central PMCID: PMCPMC3933483.
  • Gilbert CD, Sigman M, Crist RE. The neural basis of perceptual learning. Neuron. 2001 Sep 13;31(5):681–697. PubMed PMID: 11567610; eng.
  • Kehagia AA, Murray GK, Robbins TW. Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol. 2010 Apr;20(2):199–204. PubMed PMID: 20167474.
  • Klanker M, Feenstra M, Denys D. Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci. 2013 Nov 5;7:201. PubMed PMID: 24204329; PubMed Central PMCID: PMCPMC3817373.
  • Freedman M, Oscar-Berman M. Spatial and visual learning deficits in Alzheimer’s and Parkinson’s disease. Brain Cogn. 1989 Sep;11(1):114–126. PubMed PMID: 2789813; eng.
  • Song JJ, Wang Q, Du M, et al. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates. J Dairy Sci. 2017 Sep;100(9):6885–6894. PubMed PMID: 28711271; eng.
  • Pandey M, Kapila R, Kapila S. Osteoanabolic activity of whey-derived anti-oxidative (MHIRL and YVEEL) and angiotensin-converting enzyme inhibitory (YLLF, ALPMHIR, IPA and WLAHK) bioactive peptides. Peptides. 2018 Jan;99:1–7. PubMed PMID: 29122669; eng.
  • Yamada A, Mizushige T, Kanamoto R, et al. Identification of novel beta-lactoglobulin-derived peptides, wheylin-1 and −2, having anxiolytic-like activity in mice. Mol Nutr Food Res. 2014 Feb;58(2):353–358. PubMed PMID: 24039078; eng.
  • Ano Y, Ayabe T, Kutsukake T, et al. Novel lactopeptides in fermented dairy products improve memory function and cognitive decline. Neurobiol Aging. 2018 Dec;72:23–31. PubMed PMID: 30176402; eng.
  • Ano Y, Ayabe T, Ohya R, et al. Tryptophan-tyrosine dipeptide, the core sequence of beta-lactolin, improves memory by modulating the dopamine system. Nutrients. 2019 Feb 6;11(2):348. PubMed PMID: 30736353; PubMed Central PMCID: PMCPMC6412195. eng.
  • Ayabe T, Ano Y, Ohya R, et al. The lacto-tetrapeptide gly-thr-trp-tyr, beta-lactolin, improves spatial memory functions via dopamine release and D1 receptor activation in the hippocampus. Nutrients. 2019 Oct 15;11(10). PubMed PMID: 31618902; PubMed Central PMCID: PMCPMC6835598. eng. DOI:10.3390/nu11102469.
  • Kita M, Kobayashi K, Obara K, et al. Supplementation with whey peptide rich in β-lactolin improves cognitive performance in healthy older adults: a randomized, double-blind, placebo-controlled study [clinical trial]. Front Neurosci. 2019 April 24;13(399). English. DOI:10.3389/fnins.2019.00399.
  • Kita M, Obara K, Kondo S, et al. Effect of supplementation of a whey peptide rich in tryptophan-tyrosine-related peptides on cognitive performance in healthy adults: a randomized, double-blind, placebo-controlled study. Nutrients. 2018 Jul 13;10(7). PubMed PMID: 30011836; PubMed Central PMCID: PMCPMC6073406. DOI:10.3390/nu10070899.
  • Lopez JC, Karlsson RM, O’Donnell P. Dopamine D2 modulation of sign and goal tracking in rats. Neuropsychopharmacology. 2015 Aug;40(9):2096–2102. PubMed PMID: 25759299; PubMed Central PMCID: PMCPMC4613614. eng. .
  • Parkinson JA, Willoughby PJ, Robbins TW, et al. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci. 2000 Feb;114(1):42–63. PubMed PMID: 10718261; eng.
  • Tomie A, Di Poce J, Aguado A, et al. Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain. Brain Res. 2003 Jun 13;975(1–2):167–178. PubMed PMID: 12763605; eng.
  • Barnett JH, Blackwell AD, Sahakian BJ, et al. The Paired Associates Learning (PAL) test: 30 years of CANTAB translational neuroscience from laboratory to bedside in dementia research. Curr Top Behav Neurosci. 2016;28:449–474. PubMed PMID: 27646012; eng. .
  • Brigman JL, Rothblat LA. Stimulus specific deficit on visual reversal learning after lesions of medial prefrontal cortex in the mouse. Behav Brain Res. 2008 Mar 5;187(2):405–410. PubMed PMID: 18022704; eng.
  • Ayabe T, Ohya R, Ano Y. Hop-derived iso-alpha-acids in beer improve visual discrimination and reversal learning in mice as assessed by a touch panel operant system. Front Behav Neurosci. 2019;13:67. PubMed PMID: 31001094; PubMed Central PMCID: PMCPMC6454052. eng. .
  • Ano Y, Yoshino Y, Kutsukake T, et al. Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline. Aging (Albany NY). 2019 May 23;11(10):2949–2967. PubMed PMID: 31121563; PubMed Central PMCID: PMCPMC6555451. eng.
  • Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry. 2005 Jun 1;57(11):1377–1384. PubMed PMID: 15950011; eng.
  • Puig MV, Rose J, Schmidt R, et al. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Front Neural Circuits. 2014;8:93. PubMed PMID: 25140130; PubMed Central PMCID: PMCPMC4122189. eng.
  • Morita M, Wang Y, Sasaoka T, et al. Dopamine D2L receptor is required for visual discrimination and reversal learning. Mol Neuropsychiatry. 2016 Oct;2(3):124–132. PubMed PMID: 27867937; PubMed Central PMCID: PMCPMC5109995.
  • Takaji M, Takemoto A, Yokoyama C, et al. Distinct roles for primate caudate dopamine D1 and D2 receptors in visual discrimination learning revealed using shRNA knockdown. Sci Rep. 2016 Nov 2;6:35809. PubMed PMID: 27805010; PubMed Central PMCID: PMCPMC5090965.
  • Dickson PE, Calton MA, Mittleman G. Performance of C57BL/6J and DBA/2J mice on a touchscreen-based attentional set-shifting task. Behav Brain Res. 2014 Mar 15;261:158–170. PubMed PMID: 24361287; PubMed Central PMCID: PMCPMC4060595. eng.
  • Dickson PE, Cairns J, Goldowitz D, et al. Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice. Neuroscience. 2017 Mar;14(345):99–109. PubMed PMID: 27012612; PubMed Central PMCID: PMCPMC5031514. eng.
  • Voytko ML, Olton DS, Richardson RT, et al. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci. 1994 Jan;14(1):167–186. PubMed PMID: 8283232; eng.
  • Bucci DJ, Holland PC, Gallagher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci. 1998 Oct 1;18(19):8038–8046. PubMed PMID: 9742170; eng.
  • Dillon GM, Shelton D, McKinney AP, et al. Prefrontal cortex lesions and scopolamine impair attention performance of C57BL/6 mice in a novel 2-choice visual discrimination task. Behav Brain Res. 2009 Dec 1;204(1):67–76. PubMed PMID: 19416740; eng.
  • Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013 Sep;108:44–79. PubMed PMID: 23856628; eng.
  • Kirova AM, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. Biomed Res Int. 2015; 2015:748212. PubMed PMID: 26550575; PubMed Central PMCID: PMCPMC4624908. eng. .
  • Maurage P, Heeren A, Lahaye M, et al. Attentional impairments in Huntington’s disease: a specific deficit for the executive conflict. Neuropsychology. 2017 May;31(4):424–436. PubMed PMID: 28240935; eng.
  • Zai G, Robbins TW, Sahakian BJ, et al. A review of molecular genetic studies of neurocognitive deficits in schizophrenia. Neurosci Biobehav Rev. 2017 Jan;72:50–67. PubMed PMID: 27866942; eng.
  • Romberg C, Horner AE, Bussey TJ, et al. A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer’s disease. Neurobiol Aging. 2013 Mar;34(3):731–744. PubMed PMID: 22959727; PubMed Central PMCID: PMCPMC3532594. eng.
  • Romberg C, Mattson MP, Mughal MR, et al. Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J Neurosci. 2011 Mar 2;31(9):3500–3507. PubMed PMID: 21368062; PubMed Central PMCID: PMCPMC3066152. eng.
  • Piiponniemi TO, Parkkari T, Heikkinen T, et al. Impaired performance of the Q175 mouse model of Huntington’s disease in the touch screen paired associates learning task. Front Behav Neurosci. 2018;12:226. PubMed PMID: 30333735; PubMed Central PMCID: PMCPMC6176131. eng.
  • Brigman JL, Padukiewicz KE, Sutherland ML, et al. Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav Neurosci. 2006 Aug;120(4):984–988. PubMed PMID: 16893304; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.