339
Views
1
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Isoimperatorin (ISO) reduces melanin content in keratinocytes via miR-3619/CSTB and miR-3619/CSTD axes

, , ORCID Icon, , , & show all
Pages 1436-1443 | Received 13 Feb 2020, Accepted 30 Mar 2020, Published online: 16 Apr 2020

References

  • Roy S. Melanin, melanogenesis, and vitiligo. Fortschr Chem Org Naturst. 2007;88:131–185. PubMed PMID: 17302180.
  • Baraboi VA. Melanin: structure, biosynthesis, biological functions. Ukr Biokhim Zh (1999). 1999 Jul-Aug;71(4):5–14. PubMed PMID: 10791050.
  • Griffond B, Baker BI. Cell and molecular cell biology of melanin-concentrating hormone. Int Rev Cytol. 2002;213:233–277. PubMed PMID: 11837894.
  • Plonka PM, Grabacka M. Melanin synthesis in microorganisms–biotechnological and medical aspects. Acta Biochim Pol. 2006;53(3):429–443. PubMed PMID: 16951740.
  • Jian D, Jiang D, Su J, et al. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids. 2011 Nov;76(12):1297–1304. PubMed PMID: 21745488.
  • Zeng Q, Wang Q, Chen X, et al. Analysis of lncRNAs expression in UVB-induced stress responses of melanocytes. J Dermatol Sci. 2016 Jan;81(1):53–60. PubMed PMID: 26596215.
  • Wang X, Liu Y, Chen H, et al. LEF-1 regulates tyrosinase gene transcription in vitro. PLoS One. 2015;10(11):e0143142. PubMed PMID: 26580798; PubMed Central PMCID: PMCPMC4651308.
  • Zhang N, Liu ZJ, Li G, et al. Clinical and pathologic features of melanocytic lesion of the central nervous system. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2007 Aug;32(4):713–717. PubMed PMID: 17767073.
  • Van Den Bossche K, Naeyaert JM, Lambert J. The quest for the mechanism of melanin transfer. Traffic. 2006 Jul;7(7):769–778. PubMed PMID: 16787393.
  • Yang YS, Li N, Deng XM, et al. MC1R–the key gene in mammalian melanin synthesis. Yi Chuan. 2004 Jul;26(4):544–550. PubMed PMID: 15640059.
  • Hearing VJ. Determination of melanin synthetic pathways. J Invest Dermatol. 2011 Nov 17;131(E1):E8–E11. PubMed PMID: 22094404.
  • Jiang L, Huang J, Lu J, et al. Ganoderma lucidum polysaccharide reduces melanogenesis by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway. J Cell Physiol. 2019 May 21;234(12):22799–22808. PubMed PMID: 31115052.
  • Hu S, Huang J, Pei S, et al. Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol. 2019 May;234(5):7330–7340. PubMed PMID: 30362532.
  • Schraermeyer U, Peters S, Thumann G, et al. Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp Eye Res. 1999 Feb;68(2):237–245. PubMed PMID: 10068489.
  • Yang Z, Zeng B, Pan Y, et al. Autophagy participates in isoliquiritigenin-induced melanin degradation in human epidermal keratinocytes through PI3K/AKT/mTOR signaling. Biomed Pharmacother. 2018 Jan;97:248–254. PubMed PMID: 29091873.
  • Boissy RE. Melanosome transfer to and translocation in the keratinocyte. Exp Dermatol. 2003;12(Suppl 2):5–12. PubMed PMID: 14756517.
  • Hu DN. Methodology for evaluation of melanin content and production of pigment cells in vitro. Photochem Photobiol. 2008 May-Jun;84(3):645–649. PubMed PMID: 18435617.
  • Mammone T, Marenus K, Muizzuddin N, et al. Evidence and utility of melanin degrading enzymes. J Cosmet Sci. 2004 Jan-Feb;55(1):116–117. PubMed PMID: 15037924.
  • Ciechanover A. Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Medicina (B Aires). 2010;70(2):105–119. PubMed PMID: 20447892.
  • Ferguson SM. Beyond indigestion: emerging roles for lysosome-based signaling in human disease. Curr Opin Cell Biol. 2015 Aug;35:59–68. PubMed PMID: 25950843; PubMed Central PMCID: PMCPMC4529762.
  • Lettau M, Kabelitz D, Janssen O. Lysosome-related effector vesicles in T lymphocytes and NK cells. Scand J Immunol. 2015 Sep;82(3):235–243. PubMed PMID: 26118957.
  • Hasanagic M, Waheed A, Eissenberg JC. Different pathways to the lysosome: sorting out alternatives. Int Rev Cell Mol Biol. 2015;320:75–101. PubMed PMID: 26614872.
  • Ebanks JP, Koshoffer A, Wickett RR, et al. Epidermal keratinocytes from light vs. dark skin exhibit differential degradation of melanosomes. J Invest Dermatol. 2011 Jun;131(6):1226–1233. PubMed PMID: 21326292.
  • Ebanks JP, Koshoffer A, Wickett RR, et al. Hydrolytic enzymes of the interfollicular epidermis differ in expression and correlate with the phenotypic difference observed between light and dark skin. J Dermatol. 2013 Jan;40(1):27–33. PubMed PMID: 23088390.
  • Wang J, Peng L, Shi M, et al. Spectrum effect relationship and component knock-out in angelica dahurica radix by high performance liquid chromatography-q exactive hybrid quadrupole-orbitrap mass spectrometer. Molecules. 2017 Jul 21;22(7):1231. PubMed PMID: 28754032; PubMed Central PMCID: PMCPMC6152310.
  • Cho YH, Kim JH, Park SM, et al. New cosmetic agents for skin whitening from Angelica dahurica. J Cosmet Sci. 2006 Jan-Feb;57(1):11–21. PubMed PMID: 16676120.
  • Nerya O, Vaya J, Musa R, et al. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J Agric Food Chem. 2003 Feb 26;51(5):1201–1207. PubMed PMID: 12590456.
  • Murase D, Hachiya A,Takano K, et al. Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes. J Investi Dermatol. 2003;133(10):2416–2424.
  • Zhou J, Tan SH, Nicolas V, et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013 Apr;23(4):508–523. PubMed PMID: 23337583; PubMed Central PMCID: PMCPMC3616426. eng.
  • Liu B, Zhang J, Yang S, et al. Effect of silencing microRNA-508 by STTM on melanogenesis in alpaca (Vicugna pacos). Gene. 2018 Dec 15;678:343–348. PubMed PMID: 30098430.
  • Guo J, Zhang JF, Wang WM, et al. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression. RNA Biol. 2014;11(6):732–741. PubMed PMID: 24824743; PubMed Central PMCID: PMCPMC4156504.
  • Wang P, Zhao Y, Fan R, et al. MicroRNA-21a-5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes. Int J Mol Sci. 2016 Jun 24;17(7):959. PubMed PMID: 27347933; PubMed Central PMCID: PMCPMC4964364.
  • Alesiani D, Cicconi R, Mattei M, et al. Cell cycle arrest and differentiation induction by 5,7-dimethoxycoumarin in melanoma cell lines. Int J Oncol. 2008 Feb;32(2):425–434. PubMed PMID: 18202765; eng.
  • Du J, Miller AJ, Widlund HR, et al. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol. 2003 Jul;163(1):333–343. PubMed PMID: 12819038; PubMed Central PMCID: PMCPMC1868174.
  • Park DJ, Sekhon SS, Yoon J, et al. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells. Mol Cell Biochem. 2016 Feb;413(1–2):119–125. 10.1007/s11010-015-2645-2. PubMed PMID: 26738491.
  • Fujita H, Motokawa T, Katagiri T, et al. Inulavosin, a melanogenesis inhibitor, leads to mistargeting of tyrosinase to lysosomes and accelerates its degradation. J Invest Dermatol. 2009 Jun;129(6):1489–1499. PubMed PMID: 19110539.
  • Dai X, Rao C, Li H, et al. Regulation of pigmentation by microRNAs: MITF-dependent microRNA-211 targets TGF-beta receptor 2. Pigment Cell Melanoma Res. 2015 Mar;28(2):217–222. PubMed PMID: 25444235.
  • Zhao Y, Wang P, Meng J, et al. MicroRNA-27a-3p inhibits melanogenesis in mouse skin melanocytes by targeting Wnt3a. Int J Mol Sci. 2015 May 14;16(5):10921–10933. PubMed PMID: 26006230; PubMed Central PMCID: PMCPMC4463683.
  • Kimura Y, Sumiyoshi M, Sakanaka M, et al. In vitro and in vivo antiproliferative effect of a combination of ultraviolet-A and alkoxy furocoumarins isolated from Umbelliferae medicinal plants, in melanoma cells. Photochem Photobiol. 2013 Sep-Oct;89(5):1216–1225. PubMed PMID: 23802687.
  • Kim YK, Kim YS, Ryu SY. Antiproliferative effect of furanocoumarins from the root of Angelica dahurica on cultured human tumor cell lines. Phytother Res. 2007 Mar;21(3):288–290. PubMed PMID: 17143927.
  • Hultman KA, Scott AW, Johnson SL. Small molecule modifier screen for kit-dependent functions in zebrafish embryonic melanocytes. Zebrafish. 2008 Dec;5(4):279–287. 10.1089/zeb.2008.0542. PubMed PMID: 19133826; PubMed Central PMCID: PMCPMC2757780.
  • Fujioka T, Furumi K, Fujii H, et al. Antiproliferative constituents from umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica. Chem Pharm Bull (Tokyo). 1999 Jan;47(1):96–100. PubMed PMID: 9987830.
  • Chen N, Seiberg M, Lin CB. Cathepsin L2 levels inversely correlate with skin color. J Invest Dermatol. 2006 Oct;126(10):2345–2347. PubMed PMID: 16728970.
  • Homma T, Kageyama S, Nishikawa A, et al. Melanosome degradation in epidermal keratinocytes related to lysosomal protease cathepsin V. Biochem Biophys Res Commun. 2018 Jun 2;500(2):339–343. PubMed PMID: 29654760.
  • Pawar K, Sharbati J, Einspanier R, et al. Mycobacterium bovis BCG interferes with miR-3619-5p control of Cathepsin S in the process of autophagy. Front Cell Infect Microbiol. 2016;6:27. PubMed PMID: 27014637; PubMed Central PMCID: PMCPMC4783571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.