281
Views
20
CrossRef citations to date
0
Altmetric
Articles

Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer

, , , , &
Pages 1514-1529 | Received 25 Mar 2014, Accepted 29 Apr 2014, Published online: 04 Jun 2014

References

  • Herring MB. Endothelial cell seeding. J. Vasc. Surg. 1991;13:731–732.10.1016/0741-5214(91)90365-2
  • Tara S, Rocco K, Hibino N, Sugiura T, Kurobe H, Breuer C, Shinoka T. Vessel bioengineering–development of small-diameter arterial grafts. Circ. J. 2014;78:12–19.10.1253/circj.CJ-13-1440
  • Liaw DJ, Huang CC, Lee WF, Borbély J, Kang ET. Synthesis and characteristics of the poly(carboxybetaine)s and the corresponding cationic polymers. J. Polym. Sci., Part A: Polym. Chem. 1997;35:3527–3536.10.1002/(ISSN)1099-0518
  • Abraham S, Unsworth LD. Multi-functional initiator and poly(carboxybetaine methacrylamides) for building biocompatible surfaces using “nitroxide mediated free radical polymerization” strategies. J. Polym. Sci., Part A: Polym. Chem. 2011;49:1051–1060.10.1002/pola.v49.5
  • Keefe AJ, Jiang S. Poly(zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 2012;4:59–63.
  • Zhang Z, Chao T, Chen S, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–10077.10.1021/la062175d
  • Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30:5234–5240.10.1016/j.biomaterials.2009.05.058
  • Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005;381:534–546.10.1007/s00216-004-2805-9
  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polylmers and their properties as polymer hydrogel membranes. Polym. J. 1990;22:355–360.10.1295/polymj.22.355
  • Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym. J. 1992;24:1259–1269.10.1295/polymj.24.1259
  • Ishihara K. Phospholipid polymers. In: Mark HF, editor. Encyclopedia of polymer science and technology. 4th ed. Hoboken: Wiley; 2014. doi:10.1002/0471440264.pst574.
  • Ishihara K, Fukazawa K. Chapter 5, 2-Methacryloyloxyethyl phosphorylcholine polymers. In: Monge S, David G, editors. Phosphorus-based polymers: from synthesis to applications. London: The Royal Society of Chemistry; 2014. p. 68–96.
  • Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci. Technol. Adv. Mater. 2012;13:064101.10.1088/1468-6996/13/6/064101
  • Ishihara K, Hanyuda H, Nakabayashi N. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Biomaterials. 1995;16:873–879.10.1016/0142-9612(95)94150-J
  • Ishihara K, Tanaka S, Furukawa N, Kurita K, Nakabayashi N. Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups. I. Molecular design of polymeric additives and their functions. J. Biomed. Mater. Res. 1996;32:391–399.10.1002/(ISSN)1097-4636
  • Iwasaki Y, Aiba Y, Morimoto N, Nakabayashi N, Ishihara K. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. J. Biomed. Mater. Res. 2000;52:701–708.10.1002/(ISSN)1097-4636
  • Ishihara K, Shibata N, Tanaka S, Iwasaki Y, Kurosaki T, Nakabayashi N. Improved blood compatibility of segmented polyurethane by polymeric additives having phospholipid polar group. II. Dispersion state of the polymeric additive and protein adsorption on the surface. J. Biomed. Mater. Res. 1996;32:401–408.10.1002/(ISSN)1097-4636
  • Hong Y, Ye SH, Nieponice A, Soletti L, Vorp DA, Wagner WR. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials. 2009;30:2457–2467.10.1016/j.biomaterials.2009.01.013
  • Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N. Reduced thrombogenicity of polymers having phospholipid polar groups. J. Biomed. Mater. Res. 1990;24:1069–1077.10.1002/(ISSN)1097-4636
  • Ishihara K, Ziats NP, Tierney BP, Nakabayashi N, Anderson JM. Protein adsorption from human plasma is reduced on phospholipid polymers. J. Biomed. Mater. Res. 1991;25:1397–1407.10.1002/(ISSN)1097-4636
  • Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Mater. Res. 1992;26:1543–1552.10.1002/(ISSN)1097-4636
  • Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998;39:323–330.10.1002/(ISSN)1097-4636
  • Liu Y, Inoue Y, Sakata S, Kakinoki S, Yamaoka T, Ishihara K. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. J. Biomater. Sci., Polym. Ed. 2014;25:474–486.10.1080/09205063.2013.873282
  • Asanuma Y, Inoue Y, Yusa S, Ishihara K. Hybridization of poly(2-methacryloyloxyethyl phosphorylcholine-block-2-ethylhexyl methacrylate) with segmented polyurethane for reducing thrombogenicity. Colloids Surf., B. 2013;108:239–245.10.1016/j.colsurfb.2013.02.042
  • Ishihara K, Fujita H, Yoneyama T, Iwasaki Y. Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. J. Biomater. Sci., Polym. Ed. 2000;11:1183–1195.10.1163/156856200744264
  • Ogawa R, Iwasaki Y, Ishihara K. Thermal property and processability of elastomeric polymer alloy composed of segmented polyurethane and phospholipid polymer. J. Biomed. Mater. Res. 2002;62:214–221.10.1002/(ISSN)1097-4636
  • Sawada S, Iwasaki Y, Nakabayashi N, Ishihara K. Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers. J. Biomed. Mater. Res. 2006;79A:476–484.10.1002/(ISSN)1552-4965
  • Uchiyama T, Watanabe J, Ishihara K. Biocompatible polymer alloy membrane for implantable artificial pancreas. J. Membr. Sci. 2002;208:39–48.10.1016/S0376-7388(02)00137-0
  • Ogawa R, Watanabe J, Ishihara K. Domain-controlled polymer alloy composed of segmented polyurethane and phospholipid polymer for biomedical applications. Sci. Technol. Adv. Mater. 2003;4:523–530.10.1016/j.stam.2003.10.030
  • Yoneyama T, Ishihara K, Nakabayashi N, Ito M, Mishima Y. Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend. J. Biomed. Mater. Res. 1998;43:15–20.10.1002/(ISSN)1097-4636
  • Yoneyama T, Ito M, Sugihara K, Ishihara K, Nakabayashi N. Small diameter vascular prosthesis with a nonthrombogenic phospholipid polymer surface: preliminary study of a new concept for functioning in the absence of pseudo- or neointima formation. Artif. Organs. 2000;24:23–28.10.1046/j.1525-1594.2000.06433.x
  • Yoneyama T, Sugihara K, Ishihara K, Iwasaki Y, Nakabayashi N. The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer. Biomaterials 2002;23:1455–1459.10.1016/S0142-9612(01)00268-X
  • Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules. 2001;34:2248–2256.10.1021/ma0018087
  • Venkatesh R, Yajjou L, Koning CE, Klumperman B. Novel brush copolymers via controlled radical polymerization. Macromol. Chem. Phys. 2004;205:2161–2168.10.1002/(ISSN)1521-3935
  • Ziats NP, Pankowsky DA, Tierney BP, Ratnoff OD, Anderson JM. Adsorption of Hageman factor (factor XII) and other human plasma proteins to biomedical polymers. J. Lab. Clin. Med. 1990;116:687–696.
  • Pankowsky DA, Ziats NP, Topham NS, Ratnoff OD, Anderson JM. Morphologic characteristics of adsorbed human plasma proteins on vascular grafts and biomaterials. J. Vasc. Surg. 1990;11:599–606.10.1016/0741-5214(90)90309-X
  • Ziats NP, Topham NS, Pankowsky DA, Anderson JM. Analysis of protein adsorption on retrieved human vascular grafts using immunogold labelling with silver enhancement. Cells Mater. 1990;1:73–82.
  • Tateishi T, Kyomoto M, Kakinoki S, Yamaoka T, Ishihara K. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. J. Biomed. Mater. Res. A. 2014;102:1342–1349.10.1002/jbm.a.v102.5
  • Ishihara K, Fujita H, Yoneyama T, Iwasaki Y. Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. J. Biomater. Sci., Polym. Ed. 2000;11:1183–1195.10.1163/156856200744264

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.